
sampledoc Documentation
Release 1.0

John Hunter, Fernando Perez, Michael Droettboom

Apr 06, 2017

CONTENTS

1 Getting started 3
1.1 Installing your doc directory . 3

2 Customizing the look and feel of the site 7

3 Sphinx extensions for embedded plots, math and more 9
3.1 ipython sessions . 10
3.2 Using math . 10
3.3 Inserting matplotlib plots . 11
3.4 Inheritance diagrams . 13
3.5 This file . 14

4 Ipython Directive 19
4.1 Pseudo-Decorators . 23
4.2 Sphinx source for this tutorial . 24

5 Sphinx cheat sheet 29
5.1 Formatting text . 29
5.2 Making a list . 29
5.3 Making a table . 30
5.4 Making links . 30
5.5 This file . 30

6 Emacs ReST support 33
6.1 Emacs helpers . 33

7 Indices and tables 35

i

ii

sampledoc Documentation, Release 1.0

This is a tutorial introduction to quickly get you up and running with your own sphinx documentation system. We’ll
cover installing sphinx, customizing the look and feel, using custom extensions for embedding plots, inheritance
diagrams, syntax highlighted ipython sessions and more. If you follow along the tutorial, you’ll start with nothing and
end up with this site – it’s the bootstrapping documentation tutorial that writes itself!

The source code for this tutorial lives in mpl git (see Fetching the data) and you can grab a hardcopy of the sampledoc
PDF

CONTENTS 1

sampledoc Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Installing your doc directory

You may already have sphinx sphinx installed – you can check by doing:

python -c 'import sphinx'

If that fails grab the latest version of and install it with:

> sudo easy_install -U Sphinx

Now you are ready to build a template for your docs, using sphinx-quickstart:

> sphinx-quickstart

accepting most of the defaults. I choose “sampledoc” as the name of my project. cd into your new directory and check
the contents:

home:~/tmp/sampledoc> ls
Makefile _static conf.py
_build _templates index.rst

The index.rst is the master ReST for your project, but before adding anything, let’s see if we can build some html:

make html

If you now point your browser to _build/html/index.html, you should see a basic sphinx site.

3

http://sphinx.pocoo.org/

sampledoc Documentation, Release 1.0

1.1.1 Fetching the data

Now we will start to customize out docs. Grab a couple of files from the web site or git. You will need
getting_started.rst and _static/basic_screenshot.png. All of the files live in the “completed”
version of this tutorial, but since this is a tutorial, we’ll just grab them one at a time, so you can learn what needs to
be changed where. Since we have more files to come, I’m going to grab the whole git directory and just copy the files
I need over for now. First, I’ll cd up back into the directory containing my project, check out the “finished” product
from git, and then copy in just the files I need into my sampledoc directory:

home:~/tmp/sampledoc> pwd
/Users/jdhunter/tmp/sampledoc
home:~/tmp/sampledoc> cd ..
home:~/tmp> git clone https://github.com/matplotlib/sampledoc.git tutorial
Cloning into 'tutorial'...
remote: Counting objects: 87, done.
remote: Compressing objects: 100% (43/43), done.
remote: Total 87 (delta 45), reused 83 (delta 41)
Unpacking objects: 100% (87/87), done.
Checking connectivity... done
home:~/tmp> cp tutorial/getting_started.rst sampledoc/
home:~/tmp> cp tutorial/_static/basic_screenshot.png sampledoc/_static/

The last step is to modify index.rst to include the getting_started.rst file (be careful with the indentation,
the “g” in “getting_started” should line up with the ‘:’ in :maxdepth:

Contents:

.. toctree::
:maxdepth: 2

getting_started.rst

4 Chapter 1. Getting started

https://github.com/matplotlib/sampledoc

sampledoc Documentation, Release 1.0

and then rebuild the docs:

cd sampledoc
make html

When you reload the page by refreshing your browser pointing to _build/html/index.html, you should see a
link to the “Getting Started” docs, and in there this page with the screenshot. Voila!

Note we used the image directive to include to the screenshot above with:

.. image:: _static/basic_screenshot.png

Next we’ll customize the look and feel of our site to give it a logo, some custom css, and update the navigation panels
to look more like the sphinx site itself – see Customizing the look and feel of the site.

1.1. Installing your doc directory 5

http://sphinx.pocoo.org/

sampledoc Documentation, Release 1.0

6 Chapter 1. Getting started

CHAPTER

TWO

CUSTOMIZING THE LOOK AND FEEL OF THE SITE

The sphinx site itself looks better than the sites created with the default css, so here we’ll invoke T. S. Eliot’s maxim
“Talent imitates, but genius steals” and grab their css and part of their layout. As before, you can either get the required
files _static/default.css and _templates/layout.html from the website or git (see Fetching the data).
Since I did a git clone before, I will just copy the stuff I need from there:

home:~/tmp/sampledoc> cp ../sampledoc_tut/_static/default.css _static/
home:~/tmp/sampledoc> cp ../sampledoc_tut/_templates/layout.html _templates/
home:~/tmp/sampledoc> ls _static/ _templates/
_static/:
basic_screenshot.png default.css

_templates/:
layout.html

Sphinx will automatically pick up the css and layout html files since we put them in the default places with the default
names, but we have to manually edit the top of layout.html to style the title. Let’s take a look at the layout file:
the first part puts a horizontal navigation bar at the top of our page, like you see on the sphinx and matplotlib sites, the
second part includes a title that when we click on it will take us home and the last part moves the vertical navigation
panels to the right side of the page:

{% extends "!layout.html" %}

{% block rootrellink %}
home|
search|

{% endblock %}

{% block relbar1 %}

<div style="background-color: white; text-align: left; padding: 10px 10px 15px 15px">
<h1 style="font-size: 3em;">Sampledoc</h1>
</div>
{{ super() }}
{% endblock %}

{# put the sidebar before the body #}
{% block sidebar1 %}{{ sidebar() }}{% endblock %}
{% block sidebar2 %}{% endblock %}

Once you rebuild the site with a make html and reload the page in your browser, you should see a fancier site that
looks like this

7

http://sphinx.pocoo.org/
http://sphinx.pocoo.org
http://matplotlib.sourceforge.net/

sampledoc Documentation, Release 1.0

8 Chapter 2. Customizing the look and feel of the site

CHAPTER

THREE

SPHINX EXTENSIONS FOR EMBEDDED PLOTS, MATH AND MORE

Sphinx is written in python, and supports the ability to write custom extensions. We’ve written a few for the matplotlib
documentation, some of which are part of matplotlib itself in the matplotlib.sphinxext module, some of which are
included only in the sphinx doc directory, and there are other extensions written by other groups, eg numpy and
ipython. We’re collecting these in this tutorial and showing you how to install and use them for your own project. First
let’s grab the python extension files from the sphinxext directory from git (see Fetching the data), and install them
in our sampledoc project sphinxext directory:

home:~/tmp/sampledoc> mkdir sphinxext
home:~/tmp/sampledoc> cp ../sampledoc_tut/sphinxext/*.py sphinxext/
home:~/tmp/sampledoc> ls sphinxext/
apigen.py docscrape.py docscrape_sphinx.py numpydoc.py

In addition to the builtin matplotlib extensions for embedding pyplot plots and rendering math with matplotlib’s native
math engine, we also have extensions for syntax highlighting ipython sessions, making inhertiance diagrams, and
more.

We need to inform sphinx of our new extensions in the conf.py file by adding the following. First we tell it where
to find the extensions:

If your extensions are in another directory, add it here. If the
directory is relative to the documentation root, use
os.path.abspath to make it absolute, like shown here.
sys.path.append(os.path.abspath('sphinxext'))

And then we tell it what extensions to load:

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = ['matplotlib.sphinxext.only_directives',

'matplotlib.sphinxext.plot_directive',
'IPython.sphinxext.ipython_directive',
'IPython.sphinxext.ipython_console_highlighting',
'sphinx.ext.mathjax',
'sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.inheritance_diagram',
'numpydoc']

Now let’s look at some of these in action. You can see the literal source for this file at extensions-literal.

9

sampledoc Documentation, Release 1.0

3.1 ipython sessions

Michael Droettboom contributed a sphinx extension which does pygments syntax highlighting on ipython sessions.
Just use ipython as the language in the sourcecode directive:

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

and you will get the syntax highlighted output below.

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

This support is included in this template, but will also be included in a future version of Pygments by default.

3.2 Using math

In sphinx you can include inline math 𝑥← 𝑦 𝑥∀𝑦 𝑥− 𝑦 or display math

𝑊 3𝛽
𝛿1𝜌1𝜎2

= 𝑈3𝛽
𝛿1𝜌1

+
1

8𝜋2

∫︁ 𝛼2

𝛼2

𝑑𝛼′
2

[︃
𝑈2𝛽
𝛿1𝜌1
− 𝛼′

2𝑈
1𝛽
𝜌1𝜎2

𝑈0𝛽
𝜌1𝜎2

]︃

To include math in your document, just use the math directive; here is a simpler equation:

.. math::

W^{3\beta}_{\delta_1 \rho_1 \sigma_2} \approx U^{3\beta}_{\delta_1 \rho_1}

which is rendered as

𝑊 3𝛽
𝛿1𝜌1𝜎2

≈ 𝑈3𝛽
𝛿1𝜌1

Recent versions of Sphinx include built-in support for math. There are three flavors:

• sphinx.ext.pngmath: uses dvipng to render the equation

• sphinx.ext.mathjax: renders the math in the browser using Javascript

• sphinx.ext.jsmath: it’s an older code, but it checks out

Additionally, matplotlib has its own math support:

• matplotlib.sphinxext.mathmpl

See the matplotlib mathtext guide for lots more information on writing mathematical expressions in matplotlib.

10 Chapter 3. Sphinx extensions for embedded plots, math and more

http://pygments.org
http://ipython.scipy.org
http://matplotlib.sourceforge.net/users/mathtext.html

sampledoc Documentation, Release 1.0

3.3 Inserting matplotlib plots

Inserting automatically-generated plots is easy. Simply put the script to generate the plot in the pyplots directory,
and refer to it using the plot directive. First make a pyplots directory at the top level of your project (next to
:conf.py) and copy the ellipses.py` file into it:

home:~/tmp/sampledoc> mkdir pyplots
home:~/tmp/sampledoc> cp ../sampledoc_tut/pyplots/ellipses.py pyplots/

You can refer to this file in your sphinx documentation; by default it will just inline the plot with links to the
source and PF and high resolution PNGS. To also include the source code for the plot in the document, pass the
include-source parameter:

.. plot:: pyplots/ellipses.py
:include-source:

In the HTML version of the document, the plot includes links to the original source code, a high-resolution PNG and
a PDF. In the PDF version of the document, the plot is included as a scalable PDF.

from pylab import *
from matplotlib.patches import Ellipse

delta = 45.0 # degrees

angles = arange(0, 360+delta, delta)
ells = [Ellipse((1, 1), 4, 2, a) for a in angles]

a = subplot(111, aspect='equal')

for e in ells:
e.set_clip_box(a.bbox)
e.set_alpha(0.1)
a.add_artist(e)

xlim(-2, 4)
ylim(-1, 3)

show()

3.3. Inserting matplotlib plots 11

sampledoc Documentation, Release 1.0

2 1 0 1 2 3 4
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

You can also inline code for plots directly, and the code will be executed at documentation build time and the figure
inserted into your docs; the following code:

.. plot::

import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(1000)
plt.hist(x, 20)
plt.grid()
plt.title(r'Normal: $\mu=%.2f, \sigma=%.2f$'%(x.mean(), x.std()))
plt.show()

produces this output:

12 Chapter 3. Sphinx extensions for embedded plots, math and more

sampledoc Documentation, Release 1.0

4 3 2 1 0 1 2 3
0

20

40

60

80

100

120

140

160
Normal: = 0.05, = 0.99

See the matplotlib pyplot tutorial and the gallery for lots of examples of matplotlib plots.

3.4 Inheritance diagrams

Inheritance diagrams can be inserted directly into the document by providing a list of class or module names to the
inheritance-diagram directive.

For example:

.. inheritance-diagram:: codecs

produces:

3.4. Inheritance diagrams 13

http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
http://matplotlib.sourceforge.net/gallery.html

sampledoc Documentation, Release 1.0

codecs.BufferedIncrementalDecodercodecs.IncrementalDecoder

codecs.BufferedIncrementalEncodercodecs.IncrementalEncoder

codecs.Codec

codecs.StreamReader

codecs.StreamWriter

codecs.CodecInfo

codecs.StreamReaderWriter

codecs.StreamRecoder

See the Ipython Directive for a tutorial on embedding stateful, matplotlib aware ipython sessions into your rest docs
with multiline and doctest support.

3.5 This file

.. _extensions:

**
Sphinx extensions for embedded plots, math and more

**

Sphinx is written in python, and supports the ability to write custom
extensions. We've written a few for the matplotlib documentation,
some of which are part of matplotlib itself in the
matplotlib.sphinxext module, some of which are included only in the
sphinx doc directory, and there are other extensions written by other
groups, eg numpy and ipython. We're collecting these in this tutorial
and showing you how to install and use them for your own project.
First let's grab the python extension files from the :file:`sphinxext`
directory from git (see :ref:`fetching-the-data`), and install them in
our :file:`sampledoc` project :file:`sphinxext` directory::

home:~/tmp/sampledoc> mkdir sphinxext
home:~/tmp/sampledoc> cp ../sampledoc_tut/sphinxext/*.py sphinxext/
home:~/tmp/sampledoc> ls sphinxext/
apigen.py docscrape.py docscrape_sphinx.py numpydoc.py

In addition to the builtin matplotlib extensions for embedding pyplot

14 Chapter 3. Sphinx extensions for embedded plots, math and more

sampledoc Documentation, Release 1.0

plots and rendering math with matplotlib's native math engine, we also
have extensions for syntax highlighting ipython sessions, making
inhertiance diagrams, and more.

We need to inform sphinx of our new extensions in the :file:`conf.py`
file by adding the following. First we tell it where to find the extensions::

If your extensions are in another directory, add it here. If the
directory is relative to the documentation root, use
os.path.abspath to make it absolute, like shown here.
sys.path.append(os.path.abspath('sphinxext'))

And then we tell it what extensions to load::

Add any Sphinx extension module names here, as strings. They can be extensions
coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = ['matplotlib.sphinxext.only_directives',

'matplotlib.sphinxext.plot_directive',
'IPython.sphinxext.ipython_directive',
'IPython.sphinxext.ipython_console_highlighting',
'sphinx.ext.mathjax',
'sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.inheritance_diagram',
'numpydoc']

Now let's look at some of these in action. You can see the literal
source for this file at :ref:`extensions-literal`.

.. _ipython-highlighting:

ipython sessions
================

Michael Droettboom contributed a sphinx extension which does `pygments
<http://pygments.org>`_ syntax highlighting on `ipython
<http://ipython.scipy.org>`_ sessions. Just use ipython as the
language in the ``sourcecode`` directive::

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)
alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

and you will get the syntax highlighted output below.

.. sourcecode:: ipython

In [69]: lines = plot([1,2,3])

In [70]: setp(lines)

3.5. This file 15

sampledoc Documentation, Release 1.0

alpha: float
animated: [True | False]
antialiased or aa: [True | False]
...snip

This support is included in this template, but will also be included
in a future version of Pygments by default.

.. _using-math:

Using math
==========

In sphinx you can include inline math :math:`x\leftarrow y\ x\forall
y\ x-y` or display math

.. math::

W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8
→˓\pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_
→˓1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_
→˓2}}\right]

To include math in your document, just use the math directive; here is
a simpler equation::

.. math::

W^{3\beta}_{\delta_1 \rho_1 \sigma_2} \approx U^{3\beta}_{\delta_1 \rho_1}

which is rendered as

.. math::

W^{3\beta}_{\delta_1 \rho_1 \sigma_2} \approx U^{3\beta}_{\delta_1 \rho_1}

Recent versions of Sphinx include built-in support for math.
There are three flavors:

- sphinx.ext.pngmath: uses dvipng to render the equation

- sphinx.ext.mathjax: renders the math in the browser using Javascript

- sphinx.ext.jsmath: it's an older code, but it checks out

Additionally, matplotlib has its own math support:

- matplotlib.sphinxext.mathmpl

See the matplotlib `mathtext guide
<http://matplotlib.sourceforge.net/users/mathtext.html>`_ for lots
more information on writing mathematical expressions in matplotlib.

.. _pyplots:

Inserting matplotlib plots
==========================

16 Chapter 3. Sphinx extensions for embedded plots, math and more

sampledoc Documentation, Release 1.0

Inserting automatically-generated plots is easy. Simply put the
script to generate the plot in the :file:`pyplots` directory, and
refer to it using the ``plot`` directive. First make a
:file:`pyplots` directory at the top level of your project (next to
:``conf.py``) and copy the :file:`ellipses.py`` file into it::

home:~/tmp/sampledoc> mkdir pyplots
home:~/tmp/sampledoc> cp ../sampledoc_tut/pyplots/ellipses.py pyplots/

You can refer to this file in your sphinx documentation; by default it
will just inline the plot with links to the source and PF and high
resolution PNGS. To also include the source code for the plot in the
document, pass the ``include-source`` parameter::

.. plot:: pyplots/ellipses.py
:include-source:

In the HTML version of the document, the plot includes links to the
original source code, a high-resolution PNG and a PDF. In the PDF
version of the document, the plot is included as a scalable PDF.

.. plot:: pyplots/ellipses.py
:include-source:

You can also inline code for plots directly, and the code will be
executed at documentation build time and the figure inserted into your
docs; the following code::

.. plot::

import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(1000)
plt.hist(x, 20)
plt.grid()
plt.title(r'Normal: $\mu=%.2f, \sigma=%.2f$'%(x.mean(), x.std()))
plt.show()

produces this output:

.. plot::

import matplotlib.pyplot as plt
import numpy as np
x = np.random.randn(1000)
plt.hist(x, 20)
plt.grid()
plt.title(r'Normal: $\mu=%.2f, \sigma=%.2f$'%(x.mean(), x.std()))
plt.show()

See the matplotlib `pyplot tutorial
<http://matplotlib.sourceforge.net/users/pyplot_tutorial.html>`_ and
the `gallery <http://matplotlib.sourceforge.net/gallery.html>`_ for
lots of examples of matplotlib plots.

3.5. This file 17

sampledoc Documentation, Release 1.0

Inheritance diagrams
====================

Inheritance diagrams can be inserted directly into the document by
providing a list of class or module names to the
``inheritance-diagram`` directive.

For example::

.. inheritance-diagram:: codecs

produces:

.. inheritance-diagram:: codecs

.. _extensions-literal:

See the :ref:`ipython_directive` for a tutorial on embedding stateful,
matplotlib aware ipython sessions into your rest docs with multiline
and doctest support.

This file
=========

.. literalinclude:: extensions.rst

18 Chapter 3. Sphinx extensions for embedded plots, math and more

CHAPTER

FOUR

IPYTHON DIRECTIVE

The ipython directive is a stateful ipython shell for embedding in sphinx documents. It knows about standard ipython
prompts, and extracts the input and output lines. These prompts will be renumbered starting at 1. The inputs will be
fed to an embedded ipython interpreter and the outputs from that interpreter will be inserted as well. For example,
code blocks like the following:

.. ipython::

In [136]: x = 2

In [137]: x**3
Out[137]: 8

will be rendered as

In [1]: x = 2

In [2]: x**3
Out[2]: 8

Note: This tutorial should be read side-by-side with the Sphinc source for this document (see Sphinx source for this
tutorial) because otherwise you will see only the rendered output and not the code that generated it. Excepting the
example above, we will not in general be showing the liuteral rest in this document that generates the rendered output.

The state from previous sessions is stored, and standard error is trapped. At doc build time, ipython’s output and std
err will be inserted, and prompts will be renumbered. So the prompt below should be renumbered in the rendered
docs, and pick up where the block above left off.

In [3]: z = x*3 # x is recalled from previous block

In [4]: z
Out[4]: 6

In [5]: print z
\\\\\\\\\\ File "<ipython-input-5-771f2b45b9f9>", line 1

print z
^

SyntaxError: Missing parentheses in call to 'print'

In [6]: q = z[) # this is a syntax error -- we trap ipy exceptions
\\\
→˓ File "<ipython-input-6-9e4a6c3ff9f7>", line 1

19

sampledoc Documentation, Release 1.0

q = z[) # this is a syntax error -- we trap ipy exceptions
^

SyntaxError: invalid syntax

The embedded interpreter supports some limited markup. For example, you can put comments in your ipython ses-
sions, which are reported verbatim. There are some handy “pseudo-decorators” that let you doctest the output. The
inputs are fed to an embedded ipython session and the outputs from the ipython session are inserted into your doc. If
the output in your doc and in the ipython session don’t match on a doctest assertion, an error will be

In [7]: x = 'hello world'

this will raise an error if the ipython output is different
In [8]: x.upper()
Out[8]: 'HELLO WORLD'

some readline features cannot be supported, so we allow
"verbatim" blocks, which are dumped in verbatim except prompts
are continuously numbered
In [9]: x.st<TAB>
x.startswith x.strip

Multi-line input is supported.

In [10]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'
....:

In [11]: print url.split('&')
File "<ipython-input-11-f46480457c17>", line 1
print url.split('&')

^
SyntaxError: invalid syntax

‘f=2009’, ‘g=d’, ‘a=1’, ‘b=8’, ‘c=2006’, ‘ignore=.csv’]

In [60]: import urllib

You can do doctesting on multi-line output as well. Just be careful when using non-deterministic inputs like random
numbers in the ipython directive, because your inputs are ruin through a live interpreter, so if you are doctesting
random output you will get an error. Here we “seed” the random number generator for deterministic output, and we
suppress the seed line so it doesn’t show up in the rendered output

In [12]: import numpy.random

In [13]: numpy.random.rand(10,2)
Out[13]:
array([[0.64524308, 0.59943846],

[0.47102322, 0.8715456],
[0.29370834, 0.74776844],
[0.99539577, 0.1313423],
[0.16250302, 0.21103583],
[0.81626524, 0.1312433],
[0.67338089, 0.72302393],
[0.7566368 , 0.07033696],
[0.22591016, 0.77731835],
[0.0072729 , 0.34273127]])

Another demonstration of multi-line input and output

20 Chapter 4. Ipython Directive

sampledoc Documentation, Release 1.0

In [14]: print x
File "<ipython-input-14-2d264e11d975>", line 1
print x

^
SyntaxError: Missing parentheses in call to 'print'

In [15]: for i in range(10):
....: print i
....:
....:

\\
→˓ File "<ipython-input-15-9f1225234c19>", line 2

print i
^

SyntaxError: Missing parentheses in call to 'print'

Most of the “pseudo-decorators” can be used an options to ipython mode. For example, to setup matplotlib pylab
but suppress the output, you can do. When using the matplotlib use directive, it should occur before any import of
pylab. This will not show up in the rendered docs, but the commands will be executed in the embedded interpreter and
subsequent line numbers will be incremented to reflect the inputs:

.. ipython::
:suppress:

In [144]: from pylab import *

In [145]: ion()

Likewise, you can set :doctest: or :verbatim: to apply these settings to the entire block. For example,

In [16]: cd mpl/examples/
/home/jdhunter/mpl/examples

In [17]: pwd
Out[17]: '/home/jdhunter/mpl/examples'

In [18]: cd mpl/examples/<TAB>
mpl/examples/animation/ mpl/examples/misc/
mpl/examples/api/ mpl/examples/mplot3d/
mpl/examples/axes_grid/ mpl/examples/pylab_examples/
mpl/examples/event_handling/ mpl/examples/widgets

In [19]: cd mpl/examples/widgets/
/home/jdhunter/mpl/examples/widgets

In [20]: !wc *
2 12 77 README.txt

40 97 884 buttons.py
26 90 712 check_buttons.py
19 52 416 cursor.py
180 404 4882 menu.py
16 45 337 multicursor.py
36 106 916 radio_buttons.py
48 226 2082 rectangle_selector.py
43 118 1063 slider_demo.py
40 124 1088 span_selector.py
450 1274 12457 total

21

sampledoc Documentation, Release 1.0

You can create one or more pyplot plots and insert them with the @savefig decorator.

In [21]: plot([1,2,3]);

use a semicolon to suppress the output
In [22]: hist(np.random.randn(10000), 100);

In a subsequent session, we can update the current figure with some text, and then resave

In [23]: ylabel('number')
Out[23]: <matplotlib.text.Text at 0x7f39fb36ab38>

In [24]: title('normal distribution')
\\Out[24]: <matplotlib.text.Text at
→˓0x7f39fb37b208>

22 Chapter 4. Ipython Directive

sampledoc Documentation, Release 1.0

In [25]: grid(True)

4.1 Pseudo-Decorators

Here are the supported decorators, and any optional arguments they take. Some of the decorators can be used as
options to the entire block (eg verbatim and suppress), and some only apply to the line just below them (eg
savefig).

@suppress

execute the ipython input block, but suppress the input and output block from the rendered output. Also,
can be applied to the entire ..ipython block as a directive option with :suppress:.

@verbatim

insert the input and output block in verbatim, but auto-increment the line numbers. Internally, the inter-
preter will be fed an empty string, so it is a no-op that keeps line numbering consistent. Also, can be
applied to the entire ..ipython block as a directive option with :verbatim:.

@savefig OUTFILE [IMAGE_OPTIONS]

save the figure to the static directory and insert it into the document, possibly binding it into a minipage
and/or putting code/figure label/references to associate the code and the figure. Takes args to pass to the
image directive (scale, width, etc can be kwargs); see image options for details.

@doctest

Compare the pasted in output in the ipython block with the output generated at doc build time, and raise
errors if they don’t match. Also, can be applied to the entire ..ipython block as a directive option with
:doctest:.

4.1. Pseudo-Decorators 23

http://docutils.sourceforge.net/docs/ref/rst/directives.html#image

sampledoc Documentation, Release 1.0

4.2 Sphinx source for this tutorial

.. _ipython_directive:

=================
Ipython Directive
=================

The ipython directive is a stateful ipython shell for embedding in
sphinx documents. It knows about standard ipython prompts, and
extracts the input and output lines. These prompts will be renumbered
starting at ``1``. The inputs will be fed to an embedded ipython
interpreter and the outputs from that interpreter will be inserted as
well. For example, code blocks like the following::

.. ipython::

In [136]: x = 2

In [137]: x**3
Out[137]: 8

will be rendered as

.. ipython::

In [136]: x = 2

In [137]: x**3
Out[137]: 8

.. note::

This tutorial should be read side-by-side with the Sphinc source
for this document (see :ref:`ipython_literal`) because otherwise
you will see only the rendered output and not the code that
generated it. Excepting the example above, we will not in general
be showing the liuteral rest in this document that generates the
rendered output.

The state from previous sessions is stored, and standard error is
trapped. At doc build time, ipython's output and std err will be
inserted, and prompts will be renumbered. So the prompt below should
be renumbered in the rendered docs, and pick up where the block above
left off.

.. ipython::

In [138]: z = x*3 # x is recalled from previous block

In [139]: z
Out[139]: 6

In [140]: print z
--------> print(z)
6

24 Chapter 4. Ipython Directive

sampledoc Documentation, Release 1.0

In [141]: q = z[) # this is a syntax error -- we trap ipy exceptions
--

File "<ipython console>", line 1
q = z[) # this is a syntax error -- we trap ipy exceptions

^
SyntaxError: invalid syntax

The embedded interpreter supports some limited markup. For example,
you can put comments in your ipython sessions, which are reported
verbatim. There are some handy "pseudo-decorators" that let you
doctest the output. The inputs are fed to an embedded ipython
session and the outputs from the ipython session are inserted into
your doc. If the output in your doc and in the ipython session don't
match on a doctest assertion, an error will be

.. ipython::

In [1]: x = 'hello world'

this will raise an error if the ipython output is different
@doctest
In [2]: x.upper()
Out[2]: 'HELLO WORLD'

some readline features cannot be supported, so we allow
"verbatim" blocks, which are dumped in verbatim except prompts
are continuously numbered
@verbatim
In [3]: x.st<TAB>
x.startswith x.strip

Multi-line input is supported.

.. ipython::

In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
.....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'

In [131]: print url.split('&')
--------> print(url.split('&'))
['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22',

'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv']

In [60]: import urllib

You can do doctesting on multi-line output as well. Just be careful
when using non-deterministic inputs like random numbers in the ipython
directive, because your inputs are ruin through a live interpreter, so
if you are doctesting random output you will get an error. Here we
"seed" the random number generator for deterministic output, and we
suppress the seed line so it doesn't show up in the rendered output

.. ipython::

4.2. Sphinx source for this tutorial 25

sampledoc Documentation, Release 1.0

In [133]: import numpy.random

@suppress
In [134]: numpy.random.seed(2358)

@doctest
In [135]: numpy.random.rand(10,2)
Out[135]:
array([[0.64524308, 0.59943846],

[0.47102322, 0.8715456],
[0.29370834, 0.74776844],
[0.99539577, 0.1313423],
[0.16250302, 0.21103583],
[0.81626524, 0.1312433],
[0.67338089, 0.72302393],
[0.7566368 , 0.07033696],
[0.22591016, 0.77731835],
[0.0072729 , 0.34273127]])

Another demonstration of multi-line input and output

.. ipython::

In [106]: print x
--------> print(x)
jdh

In [109]: for i in range(10):
.....: print i
.....:
.....:

0
1
2
3
4
5
6
7
8
9

Most of the "pseudo-decorators" can be used an options to ipython
mode. For example, to setup matplotlib pylab but suppress the output,
you can do. When using the matplotlib ``use`` directive, it should
occur before any import of pylab. This will not show up in the
rendered docs, but the commands will be executed in the embedded
interpreter and subsequent line numbers will be incremented to reflect
the inputs::

.. ipython::
:suppress:

In [144]: from pylab import *

26 Chapter 4. Ipython Directive

sampledoc Documentation, Release 1.0

In [145]: ion()

.. ipython::
:suppress:

In [144]: from pylab import *

In [145]: ion()

Likewise, you can set ``:doctest:`` or ``:verbatim:`` to apply these
settings to the entire block. For example,

.. ipython::
:verbatim:

In [9]: cd mpl/examples/
/home/jdhunter/mpl/examples

In [10]: pwd
Out[10]: '/home/jdhunter/mpl/examples'

In [14]: cd mpl/examples/<TAB>
mpl/examples/animation/ mpl/examples/misc/
mpl/examples/api/ mpl/examples/mplot3d/
mpl/examples/axes_grid/ mpl/examples/pylab_examples/
mpl/examples/event_handling/ mpl/examples/widgets

In [14]: cd mpl/examples/widgets/
/home/jdhunter/mpl/examples/widgets

In [15]: !wc *
2 12 77 README.txt

40 97 884 buttons.py
26 90 712 check_buttons.py
19 52 416 cursor.py

180 404 4882 menu.py
16 45 337 multicursor.py
36 106 916 radio_buttons.py
48 226 2082 rectangle_selector.py
43 118 1063 slider_demo.py
40 124 1088 span_selector.py

450 1274 12457 total

You can create one or more pyplot plots and insert them with the
``@savefig`` decorator.

.. ipython::

@savefig plot_simple.png width=4in
In [151]: plot([1,2,3]);

use a semicolon to suppress the output
@savefig hist_simple.png width=4in
In [151]: hist(np.random.randn(10000), 100);

4.2. Sphinx source for this tutorial 27

sampledoc Documentation, Release 1.0

In a subsequent session, we can update the current figure with some
text, and then resave

.. ipython::

In [151]: ylabel('number')

In [152]: title('normal distribution')

@savefig hist_with_text.png width=4in
In [153]: grid(True)

Pseudo-Decorators
=================

Here are the supported decorators, and any optional arguments they
take. Some of the decorators can be used as options to the entire
block (eg ``verbatim`` and ``suppress``), and some only apply to the
line just below them (eg ``savefig``).

@suppress

execute the ipython input block, but suppress the input and output
block from the rendered output. Also, can be applied to the entire
``..ipython`` block as a directive option with ``:suppress:``.

@verbatim

insert the input and output block in verbatim, but auto-increment
the line numbers. Internally, the interpreter will be fed an empty
string, so it is a no-op that keeps line numbering consistent.
Also, can be applied to the entire ``..ipython`` block as a
directive option with ``:verbatim:``.

@savefig OUTFILE [IMAGE_OPTIONS]

save the figure to the static directory and insert it into the
document, possibly binding it into a minipage and/or putting
code/figure label/references to associate the code and the
figure. Takes args to pass to the image directive (*scale*,

width, etc can be kwargs); see `image options
<http://docutils.sourceforge.net/docs/ref/rst/directives.html#image>`_
for details.

@doctest

Compare the pasted in output in the ipython block with the output
generated at doc build time, and raise errors if they don’t
match. Also, can be applied to the entire ``..ipython`` block as a
directive option with ``:doctest:``.

.. _ipython_literal:

Sphinx source for this tutorial
====================================

.. literalinclude:: ipython_directive.rst

28 Chapter 4. Ipython Directive

CHAPTER

FIVE

SPHINX CHEAT SHEET

Here is a quick and dirty cheat sheet for some common stuff you want to do in sphinx and ReST. You can see the
literal source for this file at This file.

5.1 Formatting text

You use inline markup to make text italics, bold, or monotype.

You can represent code blocks fairly easily:

import numpy as np
x = np.random.rand(12)

Or literally include code:

from pylab import *
from matplotlib.patches import Ellipse

delta = 45.0 # degrees

angles = arange(0, 360+delta, delta)
ells = [Ellipse((1, 1), 4, 2, a) for a in angles]

a = subplot(111, aspect='equal')

for e in ells:
e.set_clip_box(a.bbox)
e.set_alpha(0.1)
a.add_artist(e)

xlim(-2, 4)
ylim(-1, 3)

show()

5.2 Making a list

It is easy to make lists in rest

29

sampledoc Documentation, Release 1.0

5.2.1 Bullet points

This is a subsection making bullet points

• point A

• point B

• point C

5.2.2 Enumerated points

This is a subsection making numbered points

1. point A

2. point B

3. point C

5.3 Making a table

This shows you how to make a table – if you only want to make a list see Making a list.

Name Age
John D Hunter 40
Cast of Thousands 41
And Still More 42

5.4 Making links

It is easy to make a link to yahoo or to some section inside this document (see Making a table) or another document.

You can also reference classes, modules, functions, etc that are documented using the sphinx autodoc facilites. For
example, see the module matplotlib.backend_bases documentation, or the class LocationEvent, or the
method mpl_connect().

5.5 This file

.. _cheat-sheet:

Sphinx cheat sheet

Here is a quick and dirty cheat sheet for some common stuff you want
to do in sphinx and ReST. You can see the literal source for this
file at :ref:`cheatsheet-literal`.

.. _formatting-text:

Formatting text

30 Chapter 5. Sphinx cheat sheet

http://yahoo.com
http://sphinx.pocoo.org/ext/autodoc.html

sampledoc Documentation, Release 1.0

===============

You use inline markup to make text *italics*, **bold**, or ``monotype``.

You can represent code blocks fairly easily::

import numpy as np
x = np.random.rand(12)

Or literally include code:

.. literalinclude:: pyplots/ellipses.py

.. _making-a-list:

Making a list
=============

It is easy to make lists in rest

Bullet points

This is a subsection making bullet points

* point A

* point B

* point C

Enumerated points

This is a subsection making numbered points

#. point A

#. point B

#. point C

.. _making-a-table:

Making a table
==============

This shows you how to make a table -- if you only want to make a list see
→˓:ref:`making-a-list`.

================== ============
Name Age
================== ============
John D Hunter 40
Cast of Thousands 41
And Still More 42

5.5. This file 31

sampledoc Documentation, Release 1.0

================== ============

.. _making-links:

Making links
============

It is easy to make a link to `yahoo <http://yahoo.com>`_ or to some
section inside this document (see :ref:`making-a-table`) or another
document.

You can also reference classes, modules, functions, etc that are
documented using the sphinx `autodoc
<http://sphinx.pocoo.org/ext/autodoc.html>`_ facilites. For example,
see the module :mod:`matplotlib.backend_bases` documentation, or the
class :class:`~matplotlib.backend_bases.LocationEvent`, or the method
:meth:`~matplotlib.backend_bases.FigureCanvasBase.mpl_connect`.

.. _cheatsheet-literal:

This file
=========

.. literalinclude:: cheatsheet.rst

32 Chapter 5. Sphinx cheat sheet

CHAPTER

SIX

EMACS REST SUPPORT

6.1 Emacs helpers

There is an emacs mode rst.el which automates many important ReST tasks like building and updateing table-of-
contents, and promoting or demoting section headings. Here is the basic .emacs configuration:

(require 'rst)
(setq auto-mode-alist

(append '(("\\.txt$" . rst-mode)
("\\.rst$" . rst-mode)
("\\.rest$" . rst-mode)) auto-mode-alist))

Some helpful functions:

C-c TAB - rst-toc-insert

Insert table of contents at point

C-c C-u - rst-toc-update

Update the table of contents at point

C-c C-l rst-shift-region-left

Shift region to the left

C-c C-r rst-shift-region-right

Shift region to the right

33

http://docutils.sourceforge.net/tools/editors/emacs/rst.el

sampledoc Documentation, Release 1.0

34 Chapter 6. Emacs ReST support

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

35

	Getting started
	Installing your doc directory

	Customizing the look and feel of the site
	Sphinx extensions for embedded plots, math and more
	ipython sessions
	Using math
	Inserting matplotlib plots
	Inheritance diagrams
	This file

	Ipython Directive
	Pseudo-Decorators
	Sphinx source for this tutorial

	Sphinx cheat sheet
	Formatting text
	Making a list
	Making a table
	Making links
	This file

	Emacs ReST support
	Emacs helpers

	Indices and tables

