Python Implementations and Free-Threading
Support

Warning

Free-threaded (No-GIL) mode is experimental and only available in special builds of CPython
(starting with version 3.13). Compatibility with third-party packages, particularly C extensions, is
limited.

Overview

Python can be executed using multiple interpreters:

» CPython - the reference implementation. It now offers an experimental free-threaded (No-GIL) mode.

* PyPy — a JIT-compiled alternative optimized for long-running pure Python code, still using the GIL.

Comparison Table

Feature CPython PyPy Notes
Default Interpreter | [Yes 1 No Widely distributed
JIT Compilation I No L Yes Improves pure Python

execution speed

Free-Threading L] Experimental 1 No Available only in special
(No-GIL) (3.13+) CPython builds
C Extension U Full (legacy L1 Partial (via CFFI) Free-threaded mode
Support CPython API) requires APl updates
Memory Model Reference Tracing GC + JIT Affects concurrency behavior

counting + GIL

Timeline of No-GIL Development

Year Event

2021 PEP 703 proposed “No GIL” CPython fork

2023 PEP 703 accepted for experimental inclusion in
CPython 3.13

2024 CPython 3.13 released with optional --disable-gil
build

2025 (planned) CPython 3.14 expands free-threading and
extension support

2026+ (planned) CPython 3.15+ may stabilize No-GIL execution

Future CPython Feature Matrix

Free-Threade

Version GIL Support d Mode Status Notes

3.12 [l Yes 1 No Stable Traditional GIL model

3.13 1 Yes [Yes Experimental Requires python-freethreading
(experimental) build

3.14 [l Yes] Yes Experimental / | Improved extension support
(enhanced) Early Adoption

3.15+ 1 Yes [Yes Future No-GIL may become standard
(stabilizing)

Tabbed View (CPython vs PyPy)

Flowchart: Choosing the Right Python Interpreter

Critical and Essential Knowledge

Important

Misunderstanding these points may lead to performance or correctness issues:

+ python-freethreading is a special CPython build with GIL disabled.

* Free-threaded mode is experimental; not the default in any official release.

* Most C extensions are incompatible with No-GIL and require updates.

* Free-threaded execution does not automatically improve performance.

* Memory and object lifecycle semantics differ; race conditions are possible.

« Standard GlL-enabled CPython will remain available; No-GIL is optional.

« Explicit installation and thread-safe coding practices are required.

Caution!

Code that runs correctly under GIL may be unsafe under No-GIL.

Risks vs Benefits Matrix

Category

Benefits

Risks

Multi-threaded
Python

True parallelism across CPU cores

Race conditions if code is not
thread-safe

Performance

Potential speed-up in CPU-bound
multi-threaded code

May degrade single-threaded
performance

C Extension
Compatibility

Can write No-GIL-safe extensions

Legacy extensions may crash or
misbehave

Future-Proofing

Prepares code for upcoming GIL-free
CPython

Still experimental; behavior may
change

Migration Checkilist

1. Install Free-Threaded Python.

2. Audit all C extensions.

3. Refactor shared mutable state.

4. Run multi-threaded tests.

5. Verify third-party library compatibility.

6. Monitor performance carefully.

7. Document interpreter requirements.

Who Should Not Use Free-Threaded Python Yet

* Projects heavily dependent on legacy C extensions.

* Applications stable under standard CPython.

» Teams unfamiliar with thread safety.

» Environments requiring strict stability (e.g., production servers).

	Overview
	Comparison Table
	Timeline of No-GIL Development
	Future CPython Feature Matrix
	Tabbed View (CPython vs PyPy)
	Flowchart: Choosing the Right Python Interpreter
	Critical and Essential Knowledge
	Risks vs Benefits Matrix
	Migration Checklist
	Who Should Not Use Free-Threaded Python Yet

