.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/calibration/plot_calibration_script.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_calibration_plot_calibration_script.py: plot_calibration with examples ==================================== An example showing the :py:func:`~scikitplot.api.metrics.plot_calibration` function used by a scikit-learn classifier. .. GENERATED FROM PYTHON SOURCE LINES 8-87 .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause # run: Python scripts and shows any outputs directly in the notebook. # %run ./examples/calibration/plot_calibration_script.py import numpy as np from sklearn.calibration import CalibratedClassifierCV from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC np.random.seed(0) # reproducibility # importing pylab or pyplot import matplotlib.pyplot as plt # Import scikit-plot import scikitplot as sp # Load the data X, y = make_classification( n_samples=100000, n_features=20, n_informative=4, n_redundant=2, n_repeated=0, n_classes=3, n_clusters_per_class=2, random_state=0, ) X_train, y_train, X_val, y_val = X[:1000], y[:1000], X[1000:], y[1000:] # Create an instance of the LogisticRegression lr_probas = ( LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train).predict_proba(X_val) ) nb_probas = GaussianNB().fit(X_train, y_train).predict_proba(X_val) svc_scores = LinearSVC().fit(X_train, y_train).decision_function(X_val) svc_isotonic = ( CalibratedClassifierCV(LinearSVC(), cv=2, method="isotonic") .fit(X_train, y_train) .predict_proba(X_val) ) svc_sigmoid = ( CalibratedClassifierCV(LinearSVC(), cv=2, method="sigmoid") .fit(X_train, y_train) .predict_proba(X_val) ) rf_probas = RandomForestClassifier(random_state=0).fit(X_train, y_train).predict_proba(X_val) probas_dict = { LogisticRegression(): lr_probas, # GaussianNB(): nb_probas, "LinearSVC() + MinMax": svc_scores, "LinearSVC() + Isotonic": svc_isotonic, "LinearSVC() + Sigmoid": svc_sigmoid, # RandomForestClassifier(): rf_probas, } # Plot! fig, ax = plt.subplots(figsize=(12, 6)) ax = sp.metrics.plot_calibration( y_val, y_probas_list=probas_dict.values(), estimator_names=probas_dict.keys(), ax=ax, ) # Adjust layout to make sure everything fits plt.tight_layout() # Save the plot with a filename based on the current script's name # sp.api._utils.save_plot() # Display the plot plt.show(block=True) .. image-sg:: /auto_examples/calibration/images/sphx_glr_plot_calibration_script_001.png :alt: Calibration Curves (Reliability Diagrams) :srcset: /auto_examples/calibration/images/sphx_glr_plot_calibration_script_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /opt/conda/lib/python3.11/site-packages/sklearn/svm/_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_classes.py:32: FutureWarning: The default value of `dual` will change from `True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warning. /opt/conda/lib/python3.11/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. .. GENERATED FROM PYTHON SOURCE LINES 88-109 .. admonition:: Interpretation Primary Use: Evaluating probabilistic classifiers by comparing predicted probabilities to observed frequencies of the positive class. Goal: To assess how well the predicted probabilities align with the actual outcomes, identifying if a model is well-calibrated, overconfident, or underconfident. Typical Characteristics: - X-axis: Predicted probability (e.g., in bins from 0 to 1). - Y-axis: Observed frequency of the positive class within each bin. - Reference line (diagonal at 45°): Represents perfect calibration, where predicted probabilities match observed frequencies. .. tags:: model-type: classification model-workflow: model evaluation component: fitted model plot-type: line plot-type: calibration plot level: beginner purpose: showcase .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 5.716 seconds) .. _sphx_glr_download_auto_examples_calibration_plot_calibration_script.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/main?urlpath=lab/tree/notebooks/auto_examples/calibration/plot_calibration_script.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/calibration/plot_calibration_script.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_calibration_script.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_calibration_script.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_calibration_script.zip ` .. include:: plot_calibration_script.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_