.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/visualkeras_ANN/plot_dense.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_visualkeras_ANN_plot_dense.py: visualkeras Spam Dense example ========================================== An example showing the :py:func:`~scikitplot.visualkeras` function used by a :py:class:`~tensorflow.keras.Model` model. .. GENERATED FROM PYTHON SOURCE LINES 8-52 .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause # Force garbage collection import gc gc.collect() import tensorflow.python as tf_python # Clear the GPU memory cache tf_python.keras.backend.clear_session() model = tf_python.keras.models.Sequential() model.add(tf_python.keras.layers.InputLayer(input_shape=(100,))) # Add Dense layers model.add(tf_python.keras.layers.Dense(64, activation="relu")) # input_shape=(100,) model.add(tf_python.keras.layers.Dense(32, activation="relu")) model.add(tf_python.keras.layers.Dense(1, activation="sigmoid")) # Compile the model model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"]) from scikitplot import visualkeras img_spam = visualkeras.layered_view( model, to_file="../result_images/spam_dense.png", min_xy=10, min_z=10, scale_xy=10, scale_z=10, one_dim_orientation="x", ) try: import matplotlib.pyplot as plt plt.imshow(img_spam) plt.axis("off") plt.show() except: pass .. image-sg:: /auto_examples/visualkeras_ANN/images/sphx_glr_plot_dense_001.png :alt: plot dense :srcset: /auto_examples/visualkeras_ANN/images/sphx_glr_plot_dense_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 53-61 .. tags:: model-type: classification model-workflow: model building plot-type: visualkeras domain: neural network level: beginner purpose: showcase .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.473 seconds) .. _sphx_glr_download_auto_examples_visualkeras_ANN_plot_dense.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/main?urlpath=lab/tree/notebooks/auto_examples/visualkeras_ANN/plot_dense.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/visualkeras_ANN/plot_dense.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_dense.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_dense.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_dense.zip ` .. include:: plot_dense.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_