.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/visualkeras_NLP/plot_nlp_mpnet_with_tf_layers.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_visualkeras_NLP_plot_nlp_mpnet_with_tf_layers.py: visualkeras transformers example ========================================== An example showing the :py:func:`~scikitplot.visualkeras` function used by a :py:class:`~tensorflow.keras.Model` or :py:class:`~torch.nn.Module` or :py:class:`~transformers.TFPreTrainedModel` model. .. GENERATED FROM PYTHON SOURCE LINES 8-105 .. image-sg:: /auto_examples/visualkeras_NLP/images/sphx_glr_plot_nlp_mpnet_with_tf_layers_001.png :alt: plot nlp mpnet with tf layers :srcset: /auto_examples/visualkeras_NLP/images/sphx_glr_plot_nlp_mpnet_with_tf_layers_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFMPNetModel: ['lm_head.dense.weight', 'lm_head.layer_norm.weight', 'lm_head.decoder.bias', 'lm_head.dense.bias', 'lm_head.decoder.weight', 'lm_head.layer_norm.bias', 'lm_head.bias'] - This IS expected if you are initializing TFMPNetModel from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing TFMPNetModel from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model). Some weights or buffers of the TF 2.0 model TFMPNetModel were not initialized from the PyTorch model and are newly initialized: ['mpnet.pooler.dense.weight', 'mpnet.pooler.dense.bias'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause # Force garbage collection import gc gc.collect() import tensorflow as tf # Clear any session to reset the state of TensorFlow/Keras tf.keras.backend.clear_session() from transformers import TFAutoModel from scikitplot import visualkeras # Load the Hugging Face transformer model transformer_model = TFAutoModel.from_pretrained("microsoft/mpnet-base") # Define a Keras-compatible wrapper for the Hugging Face model def wrap_transformer_model(inputs): input_ids, attention_mask = inputs outputs = transformer_model(input_ids=input_ids, attention_mask=attention_mask) return outputs.last_hidden_state # Return the last hidden state for visualization # Define Keras model inputs input_ids = tf.keras.Input(shape=(128,), dtype=tf.int32, name="input_ids") attention_mask = tf.keras.Input(shape=(128,), dtype=tf.int32, name="attention_mask") # Pass inputs through the transformer model using a Lambda layer last_hidden_state = tf.keras.layers.Lambda( wrap_transformer_model, output_shape=(128, 768), # Explicitly specify the output shape name="microsoft_mpnet-base", )([input_ids, attention_mask]) # Reshape the output to fit into Conv2D (adding extra channel dimension) inside a Lambda layer # def reshape_last_hidden_state(x): # return tf.reshape(x, (-1, 1, 128, 768)) # reshaped_output = tf.keras.layers.Lambda(reshape_last_hidden_state)(last_hidden_state) # Use Reshape layer to reshape the output to fit into Conv2D (adding extra channel dimension) # Reshape to (batch_size, 128, 768, 1) for Conv2D input reshaped_output = tf.keras.layers.Reshape((-1, 128, 768))(last_hidden_state) # Add different layers to the model x = tf.keras.layers.Conv2D(512, (3, 3), activation="relu", padding="same", name="conv2d_1")( reshaped_output ) x = tf.keras.layers.BatchNormalization(name="batchnorm_1")(x) x = tf.keras.layers.Dropout(0.3, name="dropout_1")(x) x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), name="maxpool_1")(x) x = tf.keras.layers.Conv2D(256, (3, 3), activation="relu", padding="same", name="conv2d_2")(x) x = tf.keras.layers.BatchNormalization(name="batchnorm_2")(x) x = tf.keras.layers.Dropout(0.3, name="dropout_2")(x) x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), name="maxpool_2")(x) x = tf.keras.layers.Conv2D(128, (3, 3), activation="relu", padding="same", name="conv2d_3")(x) x = tf.keras.layers.BatchNormalization(name="batchnorm_3")(x) x = tf.keras.layers.Dropout(0.4, name="dropout_3")(x) x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), name="maxpool_3")(x) # Add GlobalAveragePooling2D before the Dense layers x = tf.keras.layers.GlobalAveragePooling2D(name="globalaveragepool")(x) # Add Dense layers x = tf.keras.layers.Dense(512, activation="relu", name="dense_1")(x) x = tf.keras.layers.Dropout(0.5, name="dropout_4")(x) x = tf.keras.layers.Dense(128, activation="relu", name="dense_2")(x) # Add output layer (classification head) dummy_output = tf.keras.layers.Dense(2, activation="softmax", name="dummy_classification_head")(x) # Wrap into a Keras model wrapped_model = tf.keras.Model(inputs=[input_ids, attention_mask], outputs=dummy_output) # Visualize the wrapped model img_nlp_mpnet_with_tf_layers = visualkeras.layered_view( wrapped_model, legend=True, show_dimension=True, scale_xy=1, scale_z=1, max_z=250, to_file="../result_images/nlp_mpnet_with_tf_layers.png", ) try: import matplotlib.pyplot as plt plt.imshow(img_nlp_mpnet_with_tf_layers) plt.axis("off") plt.show() except: pass .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 25.101 seconds) .. _sphx_glr_download_auto_examples_visualkeras_NLP_plot_nlp_mpnet_with_tf_layers.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/main?urlpath=lab/tree/notebooks/auto_examples/visualkeras_NLP/plot_nlp_mpnet_with_tf_layers.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/visualkeras_NLP/plot_nlp_mpnet_with_tf_layers.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_nlp_mpnet_with_tf_layers.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_nlp_mpnet_with_tf_layers.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_nlp_mpnet_with_tf_layers.zip ` .. include:: plot_nlp_mpnet_with_tf_layers.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_