.. highlight:: bash .. _installing_for_devs: ======================================= Setting up scikit-plots for development ======================================= .. admonition:: Template Template for further usage, template belong to matplotlib. To set up scikit-plots for development follow these steps: .. contents:: :local: Fork the scikit-plots repository ================================ scikit-plots is hosted at https://github.com/scikit-plots/scikit-plots.git. If you plan on solving issues or submitting pull requests to the main scikit-plots repository, you should first fork this repository by *clicking* the :octicon:`repo-forked` **Fork** button near the top of the `project repository `_ page. This creates a copy of the code under your account on the GitHub server. See `the GitHub documentation `__ for more details. Retrieve the latest version of the code ======================================= Now that your fork of the repository lives under your GitHub username, you can retrieve the most recent version of the source code with one of the following commands (replace ```` with your GitHub username): .. tab-set:: .. tab-item:: https .. code-block:: bash git clone https://github.com//scikit-plots.git .. tab-item:: ssh .. code-block:: bash git clone git@github.com:/scikit-plots.git This requires you to setup an `SSH key`_ in advance, but saves you from typing your password at every connection. .. _SSH key: https://docs.github.com/en/authentication/connecting-to-github-with-ssh This will place the sources in a directory :file:`scikit-plots` below your current working directory and set the remote name ``origin`` to point to your fork. Change into this directory before continuing:: cd scikit-plots Now set the remote name ``upstream`` to point to the scikit-plots main repository: .. tab-set:: .. tab-item:: https .. code-block:: bash git remote add upstream https://github.com/scikit-plots/scikit-plots.git .. tab-item:: ssh .. code-block:: bash git remote add upstream git@github.com:scikit-plots/scikit-plots.git You can now use ``upstream`` to retrieve the most current snapshot of the source code, as described in :ref:`development-workflow`. .. dropdown:: Additional ``git`` and ``GitHub`` resources :color: info :open: For more information on ``git`` and ``GitHub``, see: * `Git documentation `_ * `GitHub-Contributing to a Project `_ * `GitHub Skills `_ * :ref:`using-git` * :ref:`git-resources` * `Installing git `_ * `Managing remote repositories `_ * https://tacaswell.github.io/think-like-git.html * https://tom.preston-werner.com/2009/05/19/the-git-parable.html .. _dev-environment: Create a dedicated environment ============================== You should set up a dedicated environment to decouple your scikit-plots development from other Python and scikit-plots installations on your system. We recommend using one of the following options for a dedicated development environment because these options are configured to install the Python dependencies as part of their setup. .. _venv: https://docs.python.org/3/library/venv.html .. _conda: https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html .. tab-set:: .. tab-item:: venv environment Create a new `venv`_ environment with :: python -m venv and activate it with one of the following :: source /bin/activate # Linux/macOS \Scripts\activate.bat # Windows cmd.exe \Scripts\Activate.ps1 # Windows PowerShell On some systems, you may need to type ``python3`` instead of ``python``. For a discussion of the technical reasons, see `PEP-394 `_. Install the Python dependencies with :: pip install -r requirements/dev/dev-requirements.txt Remember to activate the environment whenever you start working on scikit-plots! .. tab-item:: conda environment Create a new `conda`_ environment and install the Python dependencies with :: conda env create -f environment.yml You can use ``mamba`` instead of ``conda`` in the above command if you have `mamba`_ installed. .. _mamba: https://mamba.readthedocs.io/en/latest/ Activate the environment using :: conda activate mpl-dev Remember to activate the environment whenever you start working on scikit-plots! .. tab-item:: :octicon:`codespaces` GitHub Codespaces `GitHub Codespaces `_ is a cloud-based in-browser development environment that comes with the appropriate setup to contribute to scikit-plots. #. Open codespaces on your fork by clicking on the green :octicon:`code` ``Code`` button on the GitHub web interface and selecting the ``Codespaces`` tab. #. Next, click on "Open codespaces on ". You will be able to change branches later, so you can select the default ``main`` branch. #. After the codespace is created, you will be taken to a new browser tab where you can use the terminal to activate a pre-defined conda environment called ``mpl-dev``:: conda activate mpl-dev Remember to activate the *mpl-dev* environment whenever you start working on scikit-plots. If you need to open a GUI window with scikit-plots output on Codespaces, our configuration includes a `light-weight Fluxbox-based desktop `_. You can use it by connecting to this desktop via your web browser. To do this: #. Press ``F1`` or ``Ctrl/Cmd+Shift+P`` and select ``Ports: Focus on Ports View`` in the VSCode session to bring it into focus. Open the ports view in your tool, select the ``noVNC`` port, and click the Globe icon. #. In the browser that appears, click the Connect button and enter the desktop password (``vscode`` by default). Check the `GitHub instructions `_ for more details on connecting to the desktop. If you also built the documentation pages, you can view them using Codespaces. Use the "Extensions" icon in the activity bar to install the "Live Server" extension. Locate the ``doc/build/html`` folder in the Explorer, right click the file you want to open and select "Open with Live Server." Install external dependencies ============================= Python dependencies were installed as part of :ref:`setting up the environment `. Additionally, the following non-Python dependencies must also be installed locally: .. rst-class:: checklist * :ref:`c++ compiler` * :ref:`documentation build dependencies ` For a full list of dependencies, see :ref:`dependencies`. External dependencies do not need to be installed when working in codespaces. .. _development-install: Install scikit-plots in editable mode ===================================== Install scikit-plots in editable mode from the :file:`scikit-plots` directory using the command :: python -m pip install --verbose --no-build-isolation --editable ".[dev]" The 'editable/develop mode' builds everything and places links in your Python environment so that Python will be able to import scikit-plots from your development source directory. This allows you to import your modified version of scikit-plots without having to re-install after changing a ``.py`` or compiled extension file. When working on a branch that does not have Meson enabled, meaning it does not have :ghpull:`26621` in its history (log), you will have to reinstall from source each time you change any compiled extension code. If the installation is not working, please consult the :ref:`troubleshooting guide `. If the guide does not offer a solution, please reach out via `chat `_ or :ref:`open an issue `. Build options ------------- If you are working heavily with files that need to be compiled, you may want to inspect the compilation log. This can be enabled by setting the environment variable :envvar:`MESONPY_EDITABLE_VERBOSE` or by setting the ``editable-verbose`` config during installation :: python -m pip install --no-build-isolation --config-settings=editable-verbose=true --editable . For more information on installation and other configuration options, see the Meson Python :external+meson-python:ref:`editable installs guide `. For a list of the other environment variables you can set before install, see :ref:`environment-variables`. Verify the Installation ======================= Run the following command to make sure you have correctly installed scikit-plots in editable mode. The command should be run when the virtual environment is activated:: python -c "import scikitplot; print(scikitplot.__file__)" This command should return : ``\scikitplot\__init__.py`` We encourage you to run tests and build docs to verify that the code installed correctly and that the docs build cleanly, so that when you make code or document related changes you are aware of the existing issues beforehand. * Run test cases to verify installation :ref:`testing` * Verify documentation build :ref:`documenting-scikit-plots` .. _pre-commit-hooks: Install pre-commit hooks ======================== `pre-commit `_ hooks save time in the review process by identifying issues with the code before a pull request is formally opened. Most hooks can also aide in fixing the errors, and the checks should have corresponding :ref:`development workflow ` and :ref:`pull request ` guidelines. Hooks are configured in `.pre-commit-config.yaml `_ and include checks for spelling and formatting, flake 8 conformity, accidentally committed files, import order, and incorrect branching. Install pre-commit hooks :: python -m pip install pre-commit pre-commit install Hooks are run automatically after the ``git commit`` stage of the :ref:`editing workflow`. When a hook has found and fixed an error in a file, that file must be *staged and committed* again. Hooks can also be run manually. All the hooks can be run, in order as listed in ``.pre-commit-config.yaml``, against the full codebase with :: pre-commit run --all-files To run a particular hook manually, run ``pre-commit run`` with the hook id :: pre-commit run --all-files Please note that the ``mypy`` pre-commit hook cannot check the :ref:`type-hints` for new functions; instead the stubs for new functions are checked using the ``stubtest`` :ref:`CI check ` and can be checked locally using ``tox -e stubtest``.