.. _docker-index: =================================== Docker Desktop or Github Codespaces =================================== .. seealso:: https://github.com/scikit-plots/scikit-plots/blob/main/docker/README.md .. important:: When the ``Docker Env`` is ready to use, click to continue to the quickstart section :ref:`Initialize and Fetch Submodules `. 🚀 Docker ---------- 💡 Work on Docker Desktop or Github Codespaces Github Codespaces ----------------- .. raw:: html

Docker Desktop ----------------- .. code-block:: sh # Forked repo: https://github.com/scikit-plots/scikit-plots.git git clone https://github.com/YOUR-USER-NAME/scikit-plots.git cd scikit-plots/docker ## Use terminal or open to vscode to run docker compose code . Docker Environment Setup for Jupyter and/or NVIDIA GPU This repository contains Docker & Docker Compose configurations for running Jupyter Notebooks with optional NVIDIA GPU support. You can run containers with either host-installed CUDA or pre-installed CUDA inside the container. 📂 Folder Structure -------------------- .. code-block:: text docker/ ├── docker-compose.yml # Primary Docker Compose file ├── docker-compose.override.yml # Optional override file (auto-included if present) ├── Dockerfile # Custom Dockerfile ├── script/ │ ├── install_gpu_nvidia_cuda.sh # GPU setup script 🏷️ Quick Start (Docker Compose) -------------------------------- 💡 The easiest way to launch the environment is using Docker Compose. ▶️ Run Docker Env Jupyter Notebook (CPU only) .. code-block:: sh docker compose up --build notebook_cpu ▶️ Run Docker Env Jupyter Notebook (With NVIDIA Host GPU) .. code-block:: sh docker compose up --build app_nvidia_host_gpu_driver ▶️ Run Docker Env Jupyter Notebook (With NVIDIA Internal CUDA GPU) .. code-block:: sh docker compose up --build app_nvidia_internal_gpu_driver ▶️ Run Docker Env Jupyter Notebook by VS Code .. raw:: html
Docker Compose IntelliSense
🚯 Stop Containers -------------------------------- .. code-block:: sh docker compose down 🐳 Docker Compose Configuration This project is based on Docker Compose and includes multiple services: 🔹 notebook_cpu (CPU-Only) Runs Jupyter Notebook using jupyter/tensorflow-notebook:latest No CUDA support, best for lightweight tasks Mounts the local folder scikit-plots to /home/jovyan/work Runs on port ``8888`` 🔹 app_nvidia_host_gpu_driver (Uses Host CUDA) Runs Jupyter Notebook using jupyter/tensorflow-notebook:latest Uses host-installed CUDA for GPU acceleration Requires NVIDIA runtime enabled (--runtime=nvidia) Runs on port ``8889`` 🔹 app_nvidia_internal_gpu_driver (CUDA Inside Container) Runs nvidia/cuda:12.6.3-cudnn-runtime-ubuntu24.04 with pre-installed CUDA Includes NVIDIA GPU support without needing host CUDA Requires NVIDIA runtime (--runtime=nvidia) Runs on port ``8890`` 🛠️ Custom Docker Commands -------------------------------- If you need more control, you can use Docker CLI commands. ▶️ Build & Run the Container Manually .. code-block:: sh docker build -t my-custom-container -f docker/Dockerfile . docker run -it --rm -p 8888:8888 my-custom-container ▶️ Check GPU Availability Inside Container .. code-block:: sh docker exec -it nvidia-smi 🖥️ Useful References -------------------------------- 📚 `Jupyter Docker Stacks: Read the Docs `_ 📚 `Docker Compose: Official Docs `_ 📚 `Dockerfile Best Practices `_ 📚 `LocalStack Installation with Docker Compose `_ 📚 `NVIDIA CUDA in Containers: NVIDIA Docs `_ .. image:: https://developer-blogs.nvidia.com/wp-content/uploads/2016/06/nvidia-docker.png :target: https://developer.nvidia.com/blog/nvidia-docker-gpu-server-application-deployment-made-easy/ :align: center 🚀 Now you're ready to run Jupyter notebooks in Docker! 😊