.. currentmodule:: scikitplot.api.metrics
.. _metrics-index:
Metrics
======================================================================
This module contains functions related to metrics.
.. _regression_metrics:
Regression metrics
----------------------------------------------------------------------
This module contains functions related to ``Regression metrics``.
.. _plot_residuals_distribution:
plot residuals distribution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:py:func:`~scikitplot.api.metrics.plot_residuals_distribution`
Trained model of :class:`~sklearn.linear_model.LinearRegression` or
:class:`~sklearn.ensemble.RandomForestRegressor`. For an example of
performing image:
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_regression_plot_residuals_distribution_script.py`: Example usage of
:class:`sklearn.linear_model.LinearRegression` using the diabetes dataset (regression).
.. dropdown:: References
* `"Normal Probability Plot of Residuals"
`_.
.. _classification_metrics:
Classification metrics
----------------------------------------------------------------------
This module contains functions related to ``Classification metrics``.
.. _plot_calibration:
plot calibration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:py:func:`~scikitplot.api.metrics.plot_calibration`
Trained model of :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.ensemble.RandomForestClassifier`. For an example of
performing image:
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_calibration_plot_calibration_script.py`: Example usage of
:class:`sklearn.linear_model.LogisticRegression` using the iris dataset
.. dropdown:: References
* `"scikit-learn PCA"
`_.
.. _plot_precision_recall:
plot precision recall
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:py:func:`~scikitplot.api.metrics.plot_precision_recall`
Trained model of :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.ensemble.RandomForestClassifier`. For an example of
performing image:
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_classification_plot_precision_recall_script.py`: Example usage of
:class:`~sklearn.linear_model.LogisticRegression` using the iris dataset
.. dropdown:: References
* `"scikit-learn precision-recall"
`_.
.. _plot_roc:
plot roc
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:py:func:`~scikitplot.api.metrics.plot_roc`
Trained model of :class:`~sklearn.linear_model.LogisticRegression` or
:class:`~sklearn.ensemble.RandomForestClassifier`. For an example of
performing image:
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_classification_plot_roc_script.py`: Example usage of
:class:`~sklearn.linear_model.LogisticRegression` using the iris dataset
.. dropdown:: References
* `"scikit-learn roc"
`_.
.. _clustering_metrics:
Clustering metrics
----------------------------------------------------------------------
This module contains functions related to ``Clustering metrics``.
.. _plot_silhouette:
plot silhouette
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:py:func:`~scikitplot.api.metrics.plot_silhouette`
Trained model of :class:`~sklearn.cluster.KMeans` or :class:`~sklearn.cluster.MiniBatchKMeans`.
For an example of performing image:
.. rubric:: Examples
* :ref:`sphx_glr_auto_examples_clustering_plot_silhouette_script.py`: Example usage of
:class:`~sklearn.cluster.KMeans` using the iris dataset
.. dropdown:: References
* `"scikit-learn k-means"
`_.
* `"scikit-learn mini-batch-k-means"
`_.