.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/kds/plot_cumulative_gain_script.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_kds_plot_cumulative_gain_script.py: plot_cumulative_gain with examples ================================== An example showing the :py:func:`~scikitplot.kds.plot_cumulative_gain` function used by a scikit-learn classifier. .. GENERATED FROM PYTHON SOURCE LINES 8-55 .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause from sklearn.datasets import ( make_classification, load_breast_cancer as data_2_classes, load_iris as data_3_classes, load_digits as data_10_classes, ) from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_predict import numpy as np; np.random.seed(0) # reproducibility # importing pylab or pyplot import matplotlib.pyplot as plt # Import scikit-plot import scikitplot as sp # Load the data X, y = data_3_classes(return_X_y=True, as_frame=False) X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0) # Create an instance of the LogisticRegression model = LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train) # Perform predictions y_val_prob = model.predict_proba(X_val) # Plot! ax = sp.kds.plot_cumulative_gain( y_val, y_val_prob ); # Adjust layout to make sure everything fits plt.tight_layout() # Save the plot with a filename based on the current script's name # sp.api._utils.save_plot() # Display the plot plt.show(block=True) .. image-sg:: /auto_examples/kds/images/sphx_glr_plot_cumulative_gain_script_001.png :alt: Cumulative Gain Plot :srcset: /auto_examples/kds/images/sphx_glr_plot_cumulative_gain_script_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 56-63 .. tags:: model-type: classification model-workflow: model evaluation plot-type: line plot-type: cum-gain curve level: beginner purpose: showcase .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.376 seconds) .. _sphx_glr_download_auto_examples_kds_plot_cumulative_gain_script.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/0.4.X?urlpath=lab/tree/notebooks/auto_examples/kds/plot_cumulative_gain_script.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/kds/plot_cumulative_gain_script.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_cumulative_gain_script.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_cumulative_gain_script.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_cumulative_gain_script.zip ` .. include:: plot_cumulative_gain_script.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_