.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/visualkeras_ANN/plot_conv_dense.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_visualkeras_ANN_plot_conv_dense.py: Visualkeras Spam Classification Conv1D Dense Example ====================================================================== An example showing Spam the :py:func:`~scikitplot.visualkeras` function used by a :py:class:`~tensorflow.keras.Model` model. .. GENERATED FROM PYTHON SOURCE LINES 8-57 .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause # Force garbage collection import gc; gc.collect() import tensorflow as tf # Clear the GPU memory cache tf.keras.backend.clear_session() model = tf.keras.models.Sequential() model.add(tf.keras.layers.InputLayer(input_shape=(100,))) # To convert 2D of input data into a 3D input # Reshape to a compatible shape for Conv1D as [batch_size, time_steps, input_dimension] # The Conv1D layer expects a 3D input: (batch_size, steps, channels). # The Reshape layer now reshapes the input to (n_timesteps,n_features) like (100, 1), # which matches the expected input of Conv1D. model.add(tf.keras.layers.Reshape((100, 1))) # Shape: (batch_size, 100, 1), input_shape=(100,) # Add Conv1D and other layers model.add(tf.keras.layers.Conv1D(32, 1, strides=1, activation="relu")) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) # Flatten and add Dense layers model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(32, activation='relu')) model.add(tf.keras.layers.Dense(1, activation='sigmoid')) # Compile the model model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) from scikitplot import visualkeras img_spam = visualkeras.layered_view( model, to_file='../result_images/spam_conv.png', min_xy=10, min_z=10, scale_xy=10, scale_z=10, one_dim_orientation='x', ) try: import matplotlib.pyplot as plt plt.imshow(img_spam) plt.axis('off') plt.show() except: pass .. image-sg:: /auto_examples/visualkeras_ANN/images/sphx_glr_plot_conv_dense_001.png :alt: plot conv dense :srcset: /auto_examples/visualkeras_ANN/images/sphx_glr_plot_conv_dense_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 58-65 .. tags:: model-type: classification model-workflow: model building plot-type: visualkeras domain: neural network level: intermediate purpose: showcase .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 7.983 seconds) .. _sphx_glr_download_auto_examples_visualkeras_ANN_plot_conv_dense.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/0.4.X?urlpath=lab/tree/notebooks/auto_examples/visualkeras_ANN/plot_conv_dense.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/visualkeras_ANN/plot_conv_dense.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_conv_dense.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_conv_dense.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_conv_dense.zip ` .. include:: plot_conv_dense.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_