.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/visualkeras_CNN/plot_autoencoder.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_visualkeras_CNN_plot_autoencoder.py: visualkeras autoencoder example ========================================== An example showing the :py:func:`~scikitplot.visualkeras` function used by a :py:class:`~tensorflow.keras.Model` model. .. GENERATED FROM PYTHON SOURCE LINES 8-57 .. code-block:: Python # Authors: The scikit-plots developers # SPDX-License-Identifier: BSD-3-Clause # Force garbage collection import gc; gc.collect() import tensorflow as tf # Clear any session to reset the state of TensorFlow/Keras tf.keras.backend.clear_session() # encoder Model encoder_input = tf.keras.Input(shape=(28, 28, 1), name='img') x = tf.keras.layers.Conv2D(16, 3, activation='relu')(encoder_input) x = tf.keras.layers.Conv2D(32, 3, activation='relu')(x) x = tf.keras.layers.MaxPooling2D(3)(x) x = tf.keras.layers.Conv2D(32, 3, activation='relu')(x) x = tf.keras.layers.Conv2D(16, 3, activation='relu')(x) encoder_output = tf.keras.layers.GlobalMaxPooling2D()(x) encoder = tf.keras.Model(encoder_input, encoder_output, name='encoder') # autoencoder Model x = tf.keras.layers.Reshape((4, 4, 1))(encoder_output) x = tf.keras.layers.Conv2DTranspose(16, 3, activation='relu')(x) x = tf.keras.layers.Conv2DTranspose(32, 3, activation='relu')(x) x = tf.keras.layers.UpSampling2D(3)(x) x = tf.keras.layers.Conv2DTranspose(16, 3, activation='relu')(x) decoder_output = tf.keras.layers.Conv2DTranspose(1, 3, activation='relu')(x) autoencoder = tf.keras.Model(encoder_input, decoder_output, name='autoencoder') from scikitplot import visualkeras img_encoder = visualkeras.layered_view( encoder, to_file='../result_images/encoder.png' ) img_autoencoder = visualkeras.layered_view( autoencoder, to_file='../result_images/autoencoder.png' ) try: import matplotlib.pyplot as plt plt.imshow(img_encoder) plt.axis('off') plt.show() plt.imshow(img_autoencoder) plt.axis('off') plt.show() except: pass .. image-sg:: /auto_examples/visualkeras_CNN/images/sphx_glr_plot_autoencoder_001.png :alt: plot autoencoder :srcset: /auto_examples/visualkeras_CNN/images/sphx_glr_plot_autoencoder_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 58-65 .. tags:: model-type: classification model-workflow: model building plot-type: visualkeras domain: neural network level: beginner purpose: showcase .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.718 seconds) .. _sphx_glr_download_auto_examples_visualkeras_CNN_plot_autoencoder.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-plots/scikit-plots/0.4.X?urlpath=lab/tree/notebooks/auto_examples/visualkeras_CNN/plot_autoencoder.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/visualkeras_CNN/plot_autoencoder.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_autoencoder.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_autoencoder.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_autoencoder.zip ` .. include:: plot_autoencoder.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_