.. currentmodule:: scikitplot.api.metrics .. _metrics-index: Metrics ====================================================================== This module contains functions related to metrics. .. _regression_metrics: Regression metrics ---------------------------------------------------------------------- This module contains functions related to ``Regression metrics``. .. _plot_residuals_distribution: plot residuals distribution ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :py:func:`~scikitplot.api.metrics.plot_residuals_distribution` Trained model of :class:`~sklearn.linear_model.LinearRegression` or :class:`~sklearn.ensemble.RandomForestRegressor`. For an example of performing image: .. rubric:: Examples * :ref:`sphx_glr_auto_examples_regression_plot_residuals_distribution_script.py`: Example usage of :class:`sklearn.linear_model.LinearRegression` using the diabetes dataset (regression). .. dropdown:: References * `"Normal Probability Plot of Residuals" `_. .. _classification_metrics: Classification metrics ---------------------------------------------------------------------- This module contains functions related to ``Classification metrics``. .. _plot_calibration: plot calibration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :py:func:`~scikitplot.api.metrics.plot_calibration` Trained model of :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.ensemble.RandomForestClassifier`. For an example of performing image: .. rubric:: Examples * :ref:`sphx_glr_auto_examples_calibration_plot_calibration_script.py`: Example usage of :class:`sklearn.linear_model.LogisticRegression` using the iris dataset .. dropdown:: References * `"scikit-learn PCA" `_. .. _plot_precision_recall: plot precision recall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :py:func:`~scikitplot.api.metrics.plot_precision_recall` Trained model of :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.ensemble.RandomForestClassifier`. For an example of performing image: .. rubric:: Examples * :ref:`sphx_glr_auto_examples_classification_plot_precision_recall_script.py`: Example usage of :class:`~sklearn.linear_model.LogisticRegression` using the iris dataset .. dropdown:: References * `"scikit-learn precision-recall" `_. .. _plot_roc: plot roc ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :py:func:`~scikitplot.api.metrics.plot_roc` Trained model of :class:`~sklearn.linear_model.LogisticRegression` or :class:`~sklearn.ensemble.RandomForestClassifier`. For an example of performing image: .. rubric:: Examples * :ref:`sphx_glr_auto_examples_classification_plot_roc_script.py`: Example usage of :class:`~sklearn.linear_model.LogisticRegression` using the iris dataset .. dropdown:: References * `"scikit-learn roc" `_. .. _clustering_metrics: Clustering metrics ---------------------------------------------------------------------- This module contains functions related to ``Clustering metrics``. .. _plot_silhouette: plot silhouette ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :py:func:`~scikitplot.api.metrics.plot_silhouette` Trained model of :class:`~sklearn.cluster.KMeans` or :class:`~sklearn.cluster.MiniBatchKMeans`. For an example of performing image: .. rubric:: Examples * :ref:`sphx_glr_auto_examples_clustering_plot_silhouette_script.py`: Example usage of :class:`~sklearn.cluster.KMeans` using the iris dataset .. dropdown:: References * `"scikit-learn k-means" `_. * `"scikit-learn mini-batch-k-means" `_.