Skip to main content
Ctrl+K
scikit-plots homepage scikit-plots homepage
  • Introduction
  • User Guide
  • APIs Reference
  • Tutorials
  • Tags
    • Release History
    • Community-G
    • Community-Z
    • Developer's Guide
    • Code of Conduct
    • Governance
    • Roadmap
    • About us
  • GitHub
  • PyPI
  • Introduction
  • User Guide
  • APIs Reference
  • Tutorials
  • Tags
  • Release History
  • Community-G
  • Community-Z
  • Developer's Guide
  • Code of Conduct
  • Governance
  • Roadmap
  • About us
  • GitHub
  • PyPI

Section Navigation

  • Metric Perfomance
    • Decomposition
    • Estimators
    • Metrics
  • Decile-Wise Perfomance
    • KeyToDataScience
    • modelplotpy
  • Stats (experimental)
  • Visualkeras (experimental)
  • Logging System
  • Array API support (experimental)

Development

  • Astropy (experimental)
  • Experimental (experimental)
  • Seaborn (experimental)
  • Probability Plots (experimental)
  • Tweedie Family
  • LightNumPy (experimental)
  • User Guide
  • Metric Perfomance

Metric Perfomance#

This module contains functions related to api. For model evaluation metric perfomance.

decomposition

  • Decomposition
    • plot pca component variance
    • plot pca 2d projection

estimators

  • Estimators
    • Regressor Model
    • Classifier Model
    • Cluster Model

metrics

  • Metrics
    • Regression metrics
    • Classification metrics
    • Clustering metrics

previous

User Guide

next

Decomposition

© Copyright 2024 - 2025 scikit-plots developers (BSD-3 Clause License) 0.4.0rc4+git.20250429.5a22d2b 2025-04-29T12:20Z.