Metrics#
This module contains functions related to metrics.
Regression metrics#
This module contains functions related to Regression metrics
.
plot residuals distribution#
Trained model of LinearRegression
or
RandomForestRegressor
. For an example of
performing image:
Examples
plot_residuals_distribution with examples: Example usage of
sklearn.linear_model.LinearRegression
using the diabetes dataset (regression).
References#
Classification metrics#
This module contains functions related to Classification metrics
.
plot calibration#
Trained model of LogisticRegression
or
RandomForestClassifier
. For an example of
performing image:
Examples
plot_calibration with examples: Example usage of
sklearn.linear_model.LogisticRegression
using the iris dataset
References#
plot precision recall#
Trained model of LogisticRegression
or
RandomForestClassifier
. For an example of
performing image:
Examples
plot_precision_recall with examples: Example usage of
LogisticRegression
using the iris dataset
References#
plot roc#
Trained model of LogisticRegression
or
RandomForestClassifier
. For an example of
performing image:
Examples
plot_roc_curve with examples: Example usage of
LogisticRegression
using the iris dataset
References#
Clustering metrics#
This module contains functions related to Clustering metrics
.
plot silhouette#
Trained model of KMeans
or MiniBatchKMeans
.
For an example of performing image:
Examples
plot_silhouette with examples: Example usage of
KMeans
using the iris dataset