plot_pca_component_variance#
- scikitplot.api.decomposition.plot_pca_component_variance(clf, *args, target_explained_variance=0.75, model_type=None, title='Cumulative Explained Variance Ratio by Principal Components', ax=None, fig=None, figsize=None, title_fontsize='large', text_fontsize='medium', x_tick_rotation=0, **kwargs)[source]#
Plots PCA components’ explained variance ratios. (new in v0.2.2)
Added in version 0.2.2.
- Parameters:
- clfobject
PCA instance that has the
explained_variance_ratio_
attribute.- titlestr, optional, default=’Cumulative Explained Variance Ratio by Principal Components’
Title of the generated plot.
- target_explained_variancefloat, optional, default=0.75
Looks for the minimum number of principal components that satisfies this value and emphasizes it on the plot.
- axmatplotlib.axes.Axes, optional, default=None
The axes upon which to plot the curve. If None, a new set of axes is created.
- figsizetuple of int, optional, default=None
Tuple denoting figure size of the plot (e.g., (6, 6)).
- title_fontsizestr or int, optional, default=’large’
Font size for the plot title. Use e.g., “small”, “medium”, “large” or integer-values.
- text_fontsizestr or int, optional, default=’medium’
Font size for the text in the plot. Use e.g., “small”, “medium”, “large” or integer-values.
- x_tick_rotationint, optional, default=0
Rotates x-axis tick labels by the specified angle.
Added in version 0.3.9.
- Returns:
- matplotlib.axes.Axes
The axes on which the plot was drawn.
Examples
>>> from sklearn.decomposition import PCA >>> from sklearn.datasets import load_digits as data_10_classes >>> import scikitplot as skplt >>> X, y = data_10_classes(return_X_y=True, as_frame=False) >>> pca = PCA(random_state=0).fit(X) >>> skplt.decomposition.plot_pca_component_variance(pca, target_explained_variance=0.95);
(
Source code
,png
)>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis >>> from sklearn.datasets import load_digits as data_10_classes >>> import scikitplot as skplt >>> X, y = data_10_classes(return_X_y=True, as_frame=False) >>> clf = LinearDiscriminantAnalysis().fit(X, y) >>> skplt.decomposition.plot_pca_component_variance(clf);
(
Source code
,png
)
Gallery examples#
plot_pca_component_variance with examples