plot_lift_decile_wise#
- scikitplot.kds.plot_lift_decile_wise(y_true, y_probas, *, pos_label=None, class_index=1, title='Decile-wise Lift Plot', ax=None, fig=None, figsize=None, title_fontsize='large', text_fontsize='medium', data=None, **kwargs)[source]#
Generates the Decile-wise Lift Plot from labels and probabilities
The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html The implementation here works only for binary classification.
- Parameters:
- y_truearray-like, shape (n_samples,)
Ground truth (correct) target values.
- y_probasarray-like, shape (n_samples, n_classes)
Prediction probabilities for each class returned by a classifier.
- titlestr, optional, default=’Decile-wise Lift Plot’
Title of the generated plot.
- title_fontsizestr or int, optional, default=14
Font size for the plot title. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- text_fontsizestr or int, optional, default=10
Font size for the text in the plot. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- figsizetuple of int, optional, default=None
Tuple denoting figure size of the plot (e.g., (6, 6)).
Added in version 0.3.9.
- Returns:
- matplotlib.axes.Axes
The axes with the plotted Decile-wise Lift curves.
See also
plot_lift
Generates the Decile based cumulative Lift Plot from labels and probabilities.
References
[1] tensorbored/kds
Examples
>>> import scikitplot as skplt >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0) >>> clf = DecisionTreeClassifier(max_depth=1, random_state=0) >>> clf = clf.fit(X_train, y_train) >>> y_prob = clf.predict_proba(X_test) >>> skplt.kds.plot_lift_decile_wise(y_test, y_prob, class_index=1)
(
Source code
,png
)