plot_classifier_eval with examples#
An example showing the plot_classifier_eval
function
used by a scikit-learn classifier.
9 # Authors: The scikit-plots developers
10 # SPDX-License-Identifier: BSD-3-Clause
Import scikit-plots#
16 from sklearn.datasets import (
17 load_iris as data_3_classes,
18 )
19 from sklearn.linear_model import LogisticRegression
20 from sklearn.model_selection import train_test_split
21
22 import numpy as np
23
24 np.random.seed(0) # reproducibility
25 # importing pylab or pyplot
26 # import matplotlib as mpl
27 import matplotlib.pyplot as plt
28
29 # Import scikit-plot
30 import scikitplot as sp
Loading the dataset#
36 # Load the data
37 X, y = data_3_classes(return_X_y=True, as_frame=True)
38 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)
Model Training#
44 # Create an instance of the LogisticRegression
45 model = LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train)
46
47 # Perform predictions
48 y_val_pred = model.predict(X_val)
49 y_train_pred = model.predict(X_train)
Plot!#
55 fig1 = sp.metrics.plot_classifier_eval(
56 y_val,
57 y_val_pred,
58 labels=np.unique(y_train),
59 figsize=(8, 2),
60 title="Val",
61 save_fig=True,
62 save_fig_filename="",
63 # overwrite=True,
64 add_timestamp=True,
65 # verbose=True,
66 )
67 # plt.show(block=True)
68 fig2 = sp.metrics.plot_classifier_eval(
69 y_train,
70 y_train_pred,
71 labels=np.unique(y_train),
72 figsize=(8, 2),
73 title="Train",
74 save_fig=True,
75 save_fig_filename="",
76 # overwrite=True,
77 add_timestamp=True,
78 # verbose=True,
79 )
Total running time of the script: (0 minutes 1.446 seconds)
Related examples