visualkeras Spam Dense example#
An example showing the visualkeras
function
used by a tf.keras.Model
model.
# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause
# Force garbage collection
import gc; gc.collect()
import tensorflow.python as tf_python
# Clear the GPU memory cache
tf_python.keras.backend.clear_session()
model = tf_python.keras.models.Sequential()
model.add(tf_python.keras.layers.InputLayer(input_shape=(100,)))
# Add Dense layers
model.add(tf_python.keras.layers.Dense(64, activation='relu')) # input_shape=(100,)
model.add(tf_python.keras.layers.Dense(32, activation='relu'))
model.add(tf_python.keras.layers.Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
from scikitplot import visualkeras
img_spam = visualkeras.layered_view(
model,
to_file='../result_images/spam_dense.png',
min_xy=10, min_z=10, scale_xy=10, scale_z=10,
one_dim_orientation='x',
)
try:
import matplotlib.pyplot as plt
plt.imshow(img_spam)
plt.axis('off')
plt.show()
except:
pass
Total running time of the script: (0 minutes 0.484 seconds)
Related examples
Visualkeras Spam Classification Conv1D Dense Example
Visualkeras Spam Classification Conv1D Dense Example
visualkeras autoencoder example
visualkeras autoencoder example
visualkeras custom VGG example
visualkeras custom VGG example
visualkeras ResNetV2 example