visualkeras Spam Dense example#
An example showing the visualkeras
function
used by a tf.keras.Model
model.
# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause
# Force garbage collection
import gc; gc.collect()
import tensorflow.python as tf_python
# Clear the GPU memory cache
tf_python.keras.backend.clear_session()
model = tf_python.keras.models.Sequential()
model.add(tf_python.keras.layers.InputLayer(input_shape=(100,)))
# Add Dense layers
model.add(tf_python.keras.layers.Dense(64, activation='relu')) # input_shape=(100,)
model.add(tf_python.keras.layers.Dense(32, activation='relu'))
model.add(tf_python.keras.layers.Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])
from scikitplot import visualkeras
img_spam = visualkeras.layered_view(
model,
to_file='../result_images/spam_dense.png',
min_xy=10, min_z=10, scale_xy=10, scale_z=10,
one_dim_orientation='x',
)
try:
import matplotlib.pyplot as plt
plt.imshow(img_spam)
plt.axis('off')
plt.show()
except:
pass

Total running time of the script: (0 minutes 0.484 seconds)
Related examples

Visualkeras Spam Classification Conv1D Dense Example
Visualkeras Spam Classification Conv1D Dense Example