mad_std#
- scikitplot.cexternals._astropy.stats.mad_std(data, axis=None, func=None, ignore_nan=False)[source]#
Calculate a robust standard deviation using the median absolute deviation (MAD).
The standard deviation estimator is given by:
\[\sigma \approx \frac{\textrm{MAD}}{\Phi^{-1}(3/4)} \approx 1.4826 \ \textrm{MAD}\]where \(\Phi^{-1}(P)\) is the normal inverse cumulative distribution function evaluated at probability \(P = 3/4\).
- Parameters:
- dataarray-like
Data array or object that can be converted to an array.
- axisNone, int, or tuple of int, optional
The axis or axes along which the robust standard deviations are computed. The default (
None) is to compute the robust standard deviation of the flattened array.- funccallable, optional
The function used to compute the median. Defaults to
numpy.ma.medianfor masked arrays, otherwise tonumpy.median.- ignore_nanbool, optional
Ignore NaN values (treat them as if they are not in the array) when computing the median. This will use
numpy.ma.medianifaxisis specified, ornumpy.nanmedianifaxis=Noneand numpy’s version is >1.10 because nanmedian is slightly faster in this case.
- Returns:
- mad_stdfloat or
~numpy.ndarray The robust standard deviation of the input data. If
axisisNonethen a scalar will be returned, otherwise a~numpy.ndarraywill be returned.
- mad_stdfloat or
- Parameters:
- Return type:
See also
biweight_midvariance,biweight_midcovariance,median_absolute_deviation
Examples
>>> import numpy as np >>> from astropy.stats import mad_std >>> rand = np.random.default_rng(12345) >>> madstd = mad_std(rand.normal(5, 2, (100, 100))) >>> print(madstd) 1.984147963351707