Events#
- class scikitplot._astropy.stats.Events(p0=0.05, gamma=None, ncp_prior=None)[source]#
Bayesian blocks fitness for binned or unbinned events.
- Parameters:
- p0float, optional
False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2013). For the Events type data,
p0
does not seem to be an accurate representation of the actual false alarm probability. If you are using this fitness function for a triggering type condition, it is recommended that you run statistical trials on signal-free noise to determine an appropriate value ofgamma
orncp_prior
to use for a desired false alarm rate.- gammafloat, optional
If specified, then use this gamma to compute the general prior form, \(p \sim {\tt gamma}^{N_{\rm blocks}}\). If gamma is specified, p0 is ignored.
- ncp_priorfloat, optional
If specified, use the value of
ncp_prior
to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). Ifncp_prior
is specified,gamma
andp0
is ignored.
- Parameters:
- fit(t, x=None, sigma=None)[source]#
Fit the Bayesian Blocks model given the specified fitness function.
- Parameters:
- tarray-like
data times (one dimensional, length N)
- xarray-like, optional
data values
- sigmaarray-like or float, optional
data errors
- Returns:
- edgesndarray
array containing the (M+1) edges defining the M optimal bins
- Parameters:
t (ArrayLike)
x (ArrayLike | None)
sigma (ArrayLike | float | None)
- Return type:
NDArray[float]
- p0_prior(N)[source]#
Empirical prior, parametrized by the false alarm probability
p0
.See eq. 21 in Scargle (2013).
Note that there was an error in this equation in the original Scargle paper (the “log” was missing). The following corrected form is taken from https://arxiv.org/abs/1304.2818
- validate_input(t, x, sigma)[source]#
Validate inputs to the model.
- Parameters:
- tarray-like
times of observations
- xarray-like, optional
values observed at each time
- sigmafloat or array-like, optional
errors in values x
- Returns:
- t, x, sigmaarray-like, float
validated and perhaps modified versions of inputs
- Parameters:
t (ArrayLike)
x (ArrayLike | None)
sigma (float | ArrayLike | None)
- Return type: