PointMeasures#
- class scikitplot._astropy.stats.PointMeasures(p0=0.05, gamma=None, ncp_prior=None)[source]#
Bayesian blocks fitness for point measures.
- Parameters:
- p0float, optional
False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2013). If gamma is specified, p0 is ignored.
- gammafloat, optional
If specified, then use this gamma to compute the general prior form, \(p \sim {\tt gamma}^{N_{\rm blocks}}\). If gamma is specified, p0 is ignored.
- ncp_priorfloat, optional
If specified, use the value of
ncp_prior
to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). Ifncp_prior
is specified,gamma
andp0
are ignored.
- Parameters:
- fit(t, x=None, sigma=None)[source]#
Fit the Bayesian Blocks model given the specified fitness function.
- Parameters:
- tarray-like
data times (one dimensional, length N)
- xarray-like, optional
data values
- sigmaarray-like or float, optional
data errors
- Returns:
- edgesndarray
array containing the (M+1) edges defining the M optimal bins
- Parameters:
t (ArrayLike)
x (ArrayLike | None)
sigma (ArrayLike | float | None)
- Return type:
NDArray[float]
- p0_prior(N)[source]#
Empirical prior, parametrized by the false alarm probability
p0
.See eq. 21 in Scargle (2013).
Note that there was an error in this equation in the original Scargle paper (the “log” was missing). The following corrected form is taken from https://arxiv.org/abs/1304.2818
- validate_input(t, x, sigma)[source]#
Validate inputs to the model.
- Parameters:
- tarray-like
times of observations
- xarray-like, optional
values observed at each time
- sigmafloat or array-like, optional
errors in values x
- Returns:
- t, x, sigmaarray-like, float
validated and perhaps modified versions of inputs
- Parameters:
t (ArrayLike)
x (ArrayLike | None)
sigma (float | ArrayLike | None)
- Return type: