Metrics#
This module contains functions related to metrics.
Regression metrics#
This module contains functions related to Regression metrics.
plot residuals distribution#
Trained model of LinearRegression or
RandomForestRegressor. For an example of
performing image:
Examples
plot_residuals_distribution with examples: Example usage of
sklearn.linear_model.LinearRegressionusing the diabetes dataset (regression).
References#
Classification metrics#
This module contains functions related to Classification metrics.
plot calibration#
Trained model of LogisticRegression or
RandomForestClassifier. For an example of
performing image:
Examples
plot_calibration with examples: Example usage of
sklearn.linear_model.LogisticRegressionusing the iris dataset
References#
plot precision recall#
Trained model of LogisticRegression or
RandomForestClassifier. For an example of
performing image:
Examples
plot_precision_recall with examples: Example usage of
LogisticRegressionusing the iris dataset
References#
plot roc#
Trained model of LogisticRegression or
RandomForestClassifier. For an example of
performing image:
Examples
plot_roc_curve with examples: Example usage of
LogisticRegressionusing the iris dataset
References#
Clustering metrics#
This module contains functions related to Clustering metrics.
plot silhouette#
Trained model of KMeans or MiniBatchKMeans.
For an example of performing image:
Examples
plot_silhouette with examples: Example usage of
KMeansusing the iris dataset