plot_residuals_distribution with examples#

An example showing the plot_residuals_distribution function used by a scikit-learn regressor.

# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause

from sklearn.datasets import (
    make_classification,
    load_diabetes as load_data,
)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.svm import LinearSVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_predict

import numpy as np; np.random.seed(0)  # reproducibility
# importing pylab or pyplot
import matplotlib.pyplot as plt

# Import scikit-plot
import scikitplot as sp
import scikitplot.probscale as probscale

# Load the data
X, y = load_data(return_X_y=True, as_frame=True)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)

# Create an instance of the LogisticRegression
model = LinearRegression().fit(X_train, y_train)

# Perform predictions
y_val_pred = model.predict(X_val)

# Plot!
ax = sp.metrics.plot_residuals_distribution(
    y_val, y_val_pred, dist_type='normal'
);

# Adjust layout to make sure everything fits
plt.tight_layout()

# Save the plot with a filename based on the current script's name
# sp.api._utils.save_plot()

# Display the plot
plt.show(block=True)
Histogram of Residuals, Q-Q Plot: Fitted Normal μ=-4.45, σ=55.28, Q-Q Plot: Standard Normal mean=0, std=1
Fitted mean-mu (μ): -4.4509
Fitted std (σ)    : 55.2768

References

The use of the following functions, methods, classes and modules is shown in this example:

Tags: model-type: regression model-workflow: model evaluation plot-type: histogram plot-type: qqplot domain: statistics level: intermediate purpose: showcase

Total running time of the script: (0 minutes 0.926 seconds)

Related examples

plot_feature_importances with examples

plot_feature_importances with examples

plot_confusion_matrix with examples

plot_confusion_matrix with examples

plot_classifier_eval with examples

plot_classifier_eval with examples

plot_precision_recall with examples

plot_precision_recall with examples

Gallery generated by Sphinx-Gallery