plot_feature_importances with examples#

An example showing the plot_feature_importances function used by a scikit-learn classifier.

 9 # Authors: The scikit-plots developers
10 # SPDX-License-Identifier: BSD-3-Clause

Import scikit-plots#

16 from sklearn.datasets import (
17     load_iris as data_3_classes,
18 )
19 from sklearn.ensemble import RandomForestClassifier
20 from sklearn.model_selection import train_test_split
21
22 import numpy as np
23
24 np.random.seed(0)  # reproducibility
25 # importing pylab or pyplot
26 import matplotlib.pyplot as plt
27
28 # Import scikit-plot
29 import scikitplot as sp

Loading the dataset#

35 # Load the data
36 X, y = data_3_classes(return_X_y=True, as_frame=False)
37 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)

Model Training#

43 # Create an instance of the LogisticRegression
44 model = RandomForestClassifier(random_state=0).fit(X_train, y_train)

Plot!#

50 # Plot!
51 ax, features = sp.estimators.plot_feature_importances(
52     model,
53     feature_names=["petal length", "petal width", "sepal length", "sepal width"],
54     save_fig=True,
55     save_fig_filename="",
56     # overwrite=True,
57     add_timestamp=True,
58     # verbose=True,
59 )
RandomForestClassifier Feature Importances

References

The use of the following functions, methods, classes and modules is shown in this example:

Tags: model-type: classification model-workflow: model evaluation plot-type: bar level: beginner purpose: showcase

Total running time of the script: (0 minutes 0.398 seconds)

Related examples

plot_residuals_distribution with examples

plot_residuals_distribution with examples

plot_residuals_distribution with examples

plot_residuals_distribution with examples

plot_cumulative_gain with examples

plot_cumulative_gain with examples

plot_elbow with examples

plot_elbow with examples

Gallery generated by Sphinx-Gallery