plot_lift with examples#

An example showing the plot_lift function with a scikit-learn classifier (e.g., LogisticRegression) instance.

10 # Authors: The scikit-plots developers
11 # SPDX-License-Identifier: BSD-3-Clause
12
13 from sklearn.datasets import (
14     load_breast_cancer as data_2_classes,
15     # load_iris as data_3_classes,
16 )
17 from sklearn.linear_model import LogisticRegression
18 from sklearn.model_selection import train_test_split
19
20 # importing pylab or pyplot
21 import matplotlib.pyplot as plt
22 import numpy as np; np.random.seed(0)  # reproducibility
23
24 # Import scikit-plot
25 import scikitplot as sp
26
27 # Load the data
28 X, y = data_2_classes(return_X_y=True, as_frame=False)
29 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)
30
31 # Create an instance of the LogisticRegression
32 model = LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train)
33
34 # Perform predictions
35 y_val_prob = model.predict_proba(X_val)
36
37 # Plot!
38 ax = sp.kds.plot_lift(
39     y_val,
40     y_val_prob,
41     save_fig=True,
42     save_fig_filename="",
43     # overwrite=True,
44     add_timestamp=True,
45     # verbose=True,
46 )
Lift Curves

Tags: model-type: classification model-workflow: model evaluation plot-type: line plot-type: decile domain: statistics level: beginner purpose: showcase

Total running time of the script: (0 minutes 0.519 seconds)

Related examples

plot_lift with examples

plot_lift with examples

plot_cumulative_gain with examples

plot_cumulative_gain with examples

plot_report with examples

plot_report with examples

plot_precision_recall with examples

plot_precision_recall with examples

Gallery generated by Sphinx-Gallery