Visualkeras Spam Classification Conv1D Dense Example#
An example showing Spam the visualkeras
function
used by a tf.keras.Model
model.
# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause
# Force garbage collection
import gc
gc.collect()
import tensorflow as tf
# Clear the GPU memory cache
tf.keras.backend.clear_session()
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.InputLayer(input_shape=(100,)))
# To convert 2D of input data into a 3D input
# Reshape to a compatible shape for Conv1D as [batch_size, time_steps, input_dimension]
# The Conv1D layer expects a 3D input: (batch_size, steps, channels).
# The Reshape layer now reshapes the input to (n_timesteps,n_features) like (100, 1),
# which matches the expected input of Conv1D.
model.add(tf.keras.layers.Reshape((100, 1))) # Shape: (batch_size, 100, 1), input_shape=(100,)
# Add Conv1D and other layers
model.add(tf.keras.layers.Conv1D(32, 1, strides=1, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))
# Flatten and add Dense layers
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation="relu"))
model.add(tf.keras.layers.Dense(32, activation="relu"))
model.add(tf.keras.layers.Dense(1, activation="sigmoid"))
# Compile the model
model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])
from scikitplot import visualkeras
img_spam = visualkeras.layered_view(
model,
to_file="../result_images/spam_conv.png",
min_xy=10,
min_z=10,
scale_xy=10,
scale_z=10,
one_dim_orientation="x",
)
try:
import matplotlib.pyplot as plt
plt.imshow(img_spam)
plt.axis("off")
plt.show()
except:
pass

Total running time of the script: (0 minutes 12.290 seconds)
Related examples