Visualkeras Spam Classification Conv1D Dense Example#

An example showing Spam the visualkeras function used by a tf.keras.Model model.

# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause

# Force garbage collection
import gc; gc.collect()
import tensorflow as tf
# Clear the GPU memory cache
tf.keras.backend.clear_session()

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.InputLayer(input_shape=(100,)))

# To convert 2D of input data into a 3D input
# Reshape to a compatible shape for Conv1D as [batch_size, time_steps, input_dimension]
# The Conv1D layer expects a 3D input: (batch_size, steps, channels).
# The Reshape layer now reshapes the input to (n_timesteps,n_features) like (100, 1),
# which matches the expected input of Conv1D.
model.add(tf.keras.layers.Reshape((100, 1)))  # Shape: (batch_size, 100, 1), input_shape=(100,)

# Add Conv1D and other layers
model.add(tf.keras.layers.Conv1D(32, 1, strides=1, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.MaxPooling1D(pool_size=2))

# Flatten and add Dense layers
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

# Compile the model
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

from scikitplot import visualkeras

img_spam = visualkeras.layered_view(
  model,
  to_file='../result_images/spam_conv.png',
  min_xy=10, min_z=10, scale_xy=10, scale_z=10,
  one_dim_orientation='x',
)
try:
    import matplotlib.pyplot as plt
    plt.imshow(img_spam)
    plt.axis('off')
    plt.show()
except:
    pass
plot conv dense

Tags: model-type: classification model-workflow: model building plot-type: visualkeras domain: neural network level: intermediate purpose: showcase

Total running time of the script: (0 minutes 5.919 seconds)

Related examples

visualkeras Spam Dense example

visualkeras Spam Dense example

visualkeras autoencoder example

visualkeras autoencoder example

visualkeras custom VGG example

visualkeras custom VGG example

visualkeras ResNetV2 example

visualkeras ResNetV2 example

Gallery generated by Sphinx-Gallery