plot_pca_2d_projection with examples#
An example showing the plot_pca_2d_projection
function
used by a scikit-learn PCA object.
# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause
from sklearn.datasets import (
make_classification,
load_breast_cancer as data_2_classes,
load_iris as data_3_classes,
load_digits as data_10_classes,
)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_predict
from sklearn.decomposition import PCA
import numpy as np; np.random.seed(0) # reproducibility
# importing pylab or pyplot
import matplotlib.pyplot as plt
# Import scikit-plot
import scikitplot as sp
# Load the data
X, y = data_3_classes(return_X_y=True, as_frame=True)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)
# Create an instance of the PCA
pca = PCA(random_state=0).fit(X_train)
# Create an instance of the LogisticRegression
# model = LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train)
# Perform predictions
# y_val_prob = model.predict_proba(X_val)
# Plot!
ax = sp.decomposition.plot_pca_2d_projection(
pca, X_train, y_train, biplot=True, feature_labels=X.columns.tolist()
);
# Adjust layout to make sure everything fits
plt.tight_layout()
# Save the plot with a filename based on the current script's name
# sp.api._utils.save_plot()
# Display the plot
plt.show(block=True)
Total running time of the script: (0 minutes 0.559 seconds)
Related examples
plot_pca_component_variance with examples
plot_pca_component_variance with examples
plot_cumulative_gain with examples
plot_cumulative_gain with examples
plot_lift with examples
plot_ks_statistic with examples
plot_ks_statistic with examples