visualkeras Spam Dense example#
An example showing the visualkeras
function
used by a tf.keras.Model
model.
# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause
# Force garbage collection
import gc
gc.collect()
import tensorflow.python as tf_python
# Clear the GPU memory cache
tf_python.keras.backend.clear_session()
model = tf_python.keras.models.Sequential()
model.add(tf_python.keras.layers.InputLayer(input_shape=(100,)))
# Add Dense layers
model.add(tf_python.keras.layers.Dense(64, activation="relu")) # input_shape=(100,)
model.add(tf_python.keras.layers.Dense(32, activation="relu"))
model.add(tf_python.keras.layers.Dense(1, activation="sigmoid"))
# Compile the model
model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["accuracy"])
from scikitplot import visualkeras
img_spam = visualkeras.layered_view(
model,
to_file="../result_images/spam_dense.png",
min_xy=10,
min_z=10,
scale_xy=10,
scale_z=10,
one_dim_orientation="x",
)
try:
import matplotlib.pyplot as plt
plt.imshow(img_spam)
plt.axis("off")
plt.show()
except:
pass

Total running time of the script: (0 minutes 0.473 seconds)
Related examples

Visualkeras Spam Classification Conv1D Dense Example
Visualkeras Spam Classification Conv1D Dense Example