plot_elbow with examples#

An example showing the plot_elbow function used by a scikit-learn clusterer.

# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause

Load the dataset#

We will start by loading the iris dataset.

from sklearn.cluster import KMeans
from sklearn.datasets import (
    load_iris as data_3_classes,
)
from sklearn.model_selection import train_test_split

import numpy as np

np.random.seed(0)  # reproducibility
# importing pylab or pyplot
import matplotlib.pyplot as plt

# Import scikit-plot
import scikitplot as sp

# Load the data
X, y = data_3_classes(return_X_y=True, as_frame=False)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)

Model Training#

Create an instance of the LogisticRegression

model = KMeans(n_clusters=4, random_state=1)

Visualize the results#

Plot!

ax = sp.estimators.plot_elbow(
    model,
    X_train,
    cluster_ranges=range(1, 11),
    save_fig=True,
    save_fig_filename="",
    # overwrite=True,
    add_timestamp=True,
    # verbose=True,
)
Elbow Curves

Tags: model-type: clustering model-type: k-means model-workflow: model evaluation plot-type: line plot-type: WSS (within-cluster sum of squares) plot-type: inertia (sum of squared distances) level: beginner purpose: showcase

Total running time of the script: (0 minutes 0.426 seconds)

Related examples

plot_cumulative_gain with examples

plot_cumulative_gain with examples

plot_lift with examples

plot_lift with examples

plot_silhouette with examples

plot_silhouette with examples

plot_feature_importances with examples

plot_feature_importances with examples

Gallery generated by Sphinx-Gallery