plot_pca_component_variance with examples#

An example showing the plot_pca_component_variance function used by a scikit-learn PCA object.

# Authors: The scikit-plots developers
# SPDX-License-Identifier: BSD-3-Clause

from sklearn.datasets import (
    make_classification,
    load_breast_cancer as data_2_classes,
    load_iris as data_3_classes,
    load_digits as data_10_classes,
)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_predict
from sklearn.decomposition import PCA

import numpy as np; np.random.seed(0)  # reproducibility
# importing pylab or pyplot
import matplotlib.pyplot as plt

# Import scikit-plot
import scikitplot as sp

# Load the data
X, y = data_3_classes(return_X_y=True, as_frame=False)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0)

# Create an instance of the PCA
pca = PCA(random_state=0).fit(X_train)

# Plot!
ax = sp.decomposition.plot_pca_component_variance(
    pca, figsize=(9,5)
);

# Adjust layout to make sure everything fits
plt.tight_layout()

# Save the plot with a filename based on the current script's name
# sp.api._utils.save_plot()

# Display the plot
plt.show(block=True)
Cumulative Explained Variance Ratio by Principal Components

Tags: model-type: regression model-type: classification model-workflow: feature engineering plot-type: line level: beginner purpose: showcase

Total running time of the script: (0 minutes 0.428 seconds)

Related examples

plot_pca_2d_projection with examples

plot_pca_2d_projection with examples

plot_cumulative_gain with examples

plot_cumulative_gain with examples

plot_lift with examples

plot_lift with examples

plot_ks_statistic with examples

plot_ks_statistic with examples

Gallery generated by Sphinx-Gallery