plot_elbow#
- scikitplot.api.estimators.plot_elbow(clf, X, title='Elbow Curves', cluster_ranges=None, n_jobs=1, show_cluster_time=True, ax=None, fig=None, figsize=None, title_fontsize='large', text_fontsize='medium')[source]#
Plot the elbow curve for different values of K in KMeans clustering.
- Parameters:
- clfobject
A clusterer instance with
fit
,fit_predict
, andscore
methods, and ann_clusters
hyperparameter. Typically an instance ofsklearn.cluster.KMeans
.- Xarray-like of shape (n_samples, n_features)
The data to cluster, where
n_samples
is the number of samples andn_features
is the number of features.- titlestr, optional, default=”Elbow Plot”
The title of the generated plot.
- cluster_rangeslist of int or None, optional, default=range(1, 12, 2)
List of values for
n_clusters
over which to plot the explained variances.- n_jobsint, optional, default=1
The number of jobs to run in parallel.
- show_cluster_timebool, optional
Whether to include a plot of the time taken to cluster for each value of K.
- axmatplotlib.axes.Axes, optional
The axes on which to plot the curve. If None, a new set of axes will be created.
- figsizetuple, optional
Tuple denoting the figure size of the plot, e.g., (6, 6). If None, the default size will be used.
- title_fontsizestr or int, optional, default=”large”
Font size of the title. Accepts Matplotlib font sizes, such as “small”, “medium”, “large”, or an integer value.
- text_fontsizestr or int, optional, default=”medium”
Font size of the text labels. Accepts Matplotlib font sizes, such as “small”, “medium”, “large”, or an integer value.
- Returns:
- axmatplotlib.axes.Axes
The axes on which the plot was drawn.
Examples
>>> from sklearn.cluster import KMeans >>> from sklearn.datasets import load_iris as data_3_classes >>> import scikitplot as skplt >>> X, y = data_3_classes(return_X_y=True, as_frame=False) >>> kmeans = KMeans(random_state=0) >>> skplt.estimators.plot_elbow( >>> kmeans, >>> X, >>> cluster_ranges=range(1, 10), >>> );
(
Source code
,png
)