layered_view#
- scikitplot.visualkeras.layered_view(model, to_file=None, min_z=20, min_xy=20, max_z=400, max_xy=2000, scale_z=0.1, scale_xy=4, type_ignore=None, index_ignore=None, color_map=None, one_dim_orientation='z', index_2d=None, background_fill='white', draw_volume=True, draw_reversed=False, padding=10, text_callable=None, text_vspacing=4, spacing=10, draw_funnel=True, shade_step=10, legend=False, legend_text_spacing_offset=15, font=None, font_color='black', show_dimension=False)[source]#
Generates an architectural visualization for a given linear Keras
tf.keras.Model
model (i.e., one input and output tensor for each layer) in a layered style, which is particularly suitable for convolutional neural networks (CNNs).- Parameters:
- modeltensorflow.keras.Model
A Keras
tf.keras.Model
model to be visualized.- to_filestr or None
Path to the file where the generated image will be saved. If the image does not exist yet it will be created, else overwritten. The file type is inferred from the file extension. If None, no file is created.
- min_zint
Minimum z-dimension size (in pixels) for a layer.
- min_xyint
Minimum x- and y-dimension size (in pixels) for a layer.
- max_zint
Maximum z-dimension size (in pixels) for a layer.
- max_xyint
Maximum x- and y-dimension size (in pixels) for a layer.
- scale_zfloat
Scalar multiplier for the z-dimension size of each layer.
- scale_xyfloat
Scalar multiplier for the x- and y-dimension size of each layer.
- type_ignorelist of str
List of layer types to ignore when visualizing the model.
- index_ignorelist of int
List of layer indices to ignore when visualizing the model.
- color_mapdict
A dictionary mapping layer defining fill and outline for each layer by class type. Layers not specified in the dictionary will use default colors.
- one_dim_orientation{‘x’, ‘y’, ‘z’}
Axis along which one-dimensional layers should be drawn.
- index_2dlist of int
Indices of layers to be drawn in 2D when
draw_volume
is True.- background_fillstr or tuple
Background color of the image. Can be a string or a tuple (R, G, B, A).
- draw_volumebool
Whether to use a 3D volumetric view (True) or a 2D box view (False).
- draw_reversedbool
Whether to draw 3D boxes in reverse order, from front-right to back-left.
- paddingint
Distance in pixels before the first and after the last layer.
- text_callablecallable
A callable that generates text for layers. The callable should take two arguments: the layer index (int) and the layer (Layer).
- text_vspacingint
Vertical spacing in pixels between lines of text produced by
text_callable
.- spacingint
Horizontal spacing in pixels between consecutive layers.
- draw_funnelbool
If set to True, a funnel will be drawn between consecutive layers.
- shade_stepfloat
Lightness deviation step for shades in the visualization (only applicable in 3D volumetric view).
- legendbool
Whether to include a legend of the layers in the image.
- legend_text_spacing_offsetfloat
Offset for the space allocated to legend text. Useful for preventing text cutoff in the legend.
- fontstr or None
Font to be used for legend text. If None, the default font is used.
- font_colorstr or tuple
Color of the font. Can be a string or a tuple (R, G, B, A).
- show_dimensionbool
Whether to display layer dimensions in the legend (only when
legend
is True).
- Returns:
- image
The generated architecture visualization image.
- Parameters:
to_file (str)
min_z (int)
min_xy (int)
max_z (int)
max_xy (int)
scale_z (float)
scale_xy (float)
type_ignore (list)
index_ignore (list)
color_map (dict)
one_dim_orientation (str)
index_2d (list)
background_fill (Any)
draw_volume (bool)
draw_reversed (bool)
padding (int)
text_vspacing (int)
spacing (int)
draw_funnel (bool)
legend (bool)
font (<module 'PIL.ImageFont' from '/opt/conda/lib/python3.11/site-packages/PIL/ImageFont.py'>)
font_color (Any)
- Return type:
<module ‘PIL.Image’ from ‘/opt/conda/lib/python3.11/site-packages/PIL/Image.py’>
Gallery examples#
Visualkeras Spam Classification Conv1D Dense Example
visualkeras Spam Dense example
visualkeras autoencoder example
visualkeras custom vgg16 example
visualkeras custom vgg16 show dimension example
visualkeras EfficientNetV2 example
visualkeras custom VGG example
visualkeras transformers example