plot_lift#
- scikitplot.kds.plot_lift(y_true, y_probas, *args, pos_label=None, class_index=1, title='Lift Curves', ax=None, fig=None, figsize=None, title_fontsize='large', text_fontsize='medium', data=None, **kwargs)[source]#
Generates the Decile based cumulative Lift Plot from labels and probabilities.
View aliases#
Main aliases
scikitplot.api.kds.plot_lift
Compat aliases
scikitplot.kds.plot_lift
The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html The implementation here works only for binary classification.
- Parameters:
- y_truearray-like of shape (n_samples,)
Ground truth (correct) target values.
- y_probasarray-like of shape (n_samples,) or (n_samples, n_classes)
Predicted probabilities for each class or only target class probabilities. If 1D, it is treated as probabilities for the positive class in binary or multiclass classification with the
class_index
.- class_indexint, optional, default=1
Index of the class of interest for multi-class classification. Ignored for binary classification.
- titlestr, default=’Lift Curves’
Title of the plot.
- title_fontsizestr or int, optional, default=’large’
Font size for the plot title.
- text_fontsizestr or int, optional, default=’medium’
Font size for the text in the plot.
- **kwargsdict, optional
Added in version 0.3.9.
- Returns:
- matplotlib.axes.Axes
The axes with the plotted lift curves.
- Other Parameters:
- axmpl.axes.Axes, optional
The axes on which to plot. If None, a new one will be created.
- figmpl.figure.Figure, optional
The figure in which to place the axes. If None, a new one will be created.
- figsizetuple, optional
Size of the figure if a new one is created. Default is None.
- nrowsint, optional
Number of rows in the subplot grid. Default is 1.
- ncolsint, optional
Number of columns in the subplot grid. Default is 1.
- indexint or tuple, optional
The position of the subplot on the grid. It can be: - An integer specifying the position (1-based).
- *argstuple, optional
validate_plotting_kwargs
properties Positional arguments passed to the function.- **kwargsdict, optional
validate_plotting_kwargs
properties Keyword arguments passed to the function.
See also
plot_lift_decile_wise
Generates the Decile-wise Lift Plot from labels and probabilities.
Examples
>>> from sklearn.datasets import load_iris as data_3_classes >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> import scikitplot as skplt >>> X, y = data_3_classes(return_X_y=True, as_frame=False) >>> X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0) >>> model = LogisticRegression(max_iter=int(1e5), random_state=0).fit(X_train, y_train) >>> y_probas = model.predict_proba(X_val) >>> skplt.kds.plot_lift( >>> y_val, y_probas, class_index=1, >>> );
(
Source code
,png
)