tweedie#
- scikitplot.externals._tweedie.tweedie = <scikitplot.externals._tweedie._tweedie_dist.tweedie_gen object>[source]#
An instance of
tweedie_gen
, providing Tweedie distribution functionality.This instance provides:
probability density function (pdf)
cumulative distribution function (cdf)
random sampling
for the Tweedie distribution.
The Tweedie distribution is part of the exponential dispersion family, characterized by a
p
parameter that determines its behavior:p = 0
: Gaussian distributionp = 1
: Poisson distributionp = 2
: Gamma distributionp = 3
: Inverse Gaussian distribution1 < p < 2
: Compound Poisson-Gamma distribution
- Parameters:
- pfloat
Tweedie power parameter.
- mufloat
Mean or location parameter.
- phifloat
Dispersion parameter, controlling the variance of the distribution.
See also
tweedie_gen
A Tweedie continuous random variable.
Examples
Compute the pdf and cdf at a given point:
>>> import numpy as np >>> from scikitplot.stats import tweedie >>> x = 2.0 >>> pdf_val = tweedie.pdf(x, p=1.5, mu=1, phi=1) >>> cdf_val = tweedie.cdf(x, p=1.5, mu=1, phi=1) >>> pdf_val, cdf_val
(np.float64(0.15640119832636348), np.float64(0.8519363569424107))
Generate random variates:
>>> import numpy as np >>> from scikitplot.stats import tweedie >>> rvs = tweedie.rvs(p=1.5, mu=1, phi=1, size=16) >>> rvs
array([0.01174131, 0.56360657, 0.36159158, 1.2499499 , 0.15343832, 1.63599507, 0.61693097, 0.96399757, 0.35830519, 0.48646597, 0.19661401, 2.78221514, 1.44123715, 0.01459541, 0.17721313, 0. ])
Plot the pdf over a range:
>>> import numpy as np >>> from scikitplot.stats import tweedie >>> import matplotlib.pyplot as plt >>> x = np.linspace(0, 5, 100) >>> y = tweedie.pdf(x, p=1.5, mu=1, phi=1) >>> plt.plot(x, y, label='Tweedie pdf (p=1.5, mu=1, phi=1)') >>> plt.xlabel("x") >>> plt.ylabel("Density") >>> plt.legend() >>> plt.show()
(
Source code
,png
)