ProjectConfig#
- class scikitplot.mlflow.ProjectConfig(profile='local', session=SessionConfig(tracking_uri=None, public_tracking_uri=None, registry_uri=None, env_file=None, extra_env=None, startup_timeout_s=30.0, ensure_reachable=False, experiment_name=None, create_experiment_if_missing=True, default_run_name=None, default_run_tags=None), server=None, start_server=False)[source]#
Project-level configuration for MLflow usage across multiple scripts.
- Attributes:
- profilestr
Named profile (e.g., “local”, “remote”, “ci”).
- sessionSessionConfig
Session configuration.
- serverServerConfig or None
Server configuration (if this profile starts a server).
- start_serverbool
Whether to start a managed server for this profile.
- Parameters:
profile (str)
session (SessionConfig)
server (ServerConfig | None)
start_server (bool)
Notes
This provides a single, shared configuration for: - train.py - hpo.py - predict.py
It prevents drift between scripts and makes runs reproducible.
- server: ServerConfig | None = None#
- session: SessionConfig = SessionConfig(tracking_uri=None, public_tracking_uri=None, registry_uri=None, env_file=None, extra_env=None, startup_timeout_s=30.0, ensure_reachable=False, experiment_name=None, create_experiment_if_missing=True, default_run_name=None, default_run_tags=None)[source]#