plot_classifier_eval#
- scikitplot.api.metrics.plot_classifier_eval(y_true, y_pred, *, labels=None, normalize=None, digits=3, title='train', title_fontsize='large', text_fontsize='medium', cmap=None, x_tick_rotation=0, figsize=(8, 3), nrows=1, ncols=2, index=2, **kwargs)[source]#
Generates various evaluation plots for a classifier, including confusion matrix, precision-recall curve, and ROC curve.
This function provides a comprehensive view of a classifier’s performance through multiple plots, helping in the assessment of its effectiveness and areas for improvement.
- Parameters:
- y_truearray-like, shape (n_samples,)
Ground truth (correct) target values.
- y_predarray-like, shape (n_samples,)
Predicted target values from the classifier.
- labelslist of string, optional
List of labels for the classes. If None, labels are automatically generated based on the class indices.
- normalize{‘true’, ‘pred’, ‘all’, None}, optional
Normalizes the confusion matrix according to the specified mode. Defaults to None.
‘true’: Normalizes by true (actual) values.
‘pred’: Normalizes by predicted values.
‘all’: Normalizes by total values.
None: No normalization.
- digitsint, optional, default=3
Number of digits for formatting floating point values in the plots.
- titlestring, optional, default=’train’
Title of the generated plot.
- title_fontsizestring or int, optional, default=”large”
Font size for the plot title. Use e.g. “small”, “medium”, “large” or integer values.
- text_fontsizestring or int, optional, default=”medium”
Font size for the text in the plot. Use e.g. “small”, “medium”, “large” or integer values.
- cmapNone, str or matplotlib.colors.Colormap, optional, default=None
Colormap used for plotting. Options include ‘viridis’, ‘PiYG’, ‘plasma’, ‘inferno’, ‘nipy_spectral’, etc. See Matplotlib Colormap documentation for available choices.
https://matplotlib.org/stable/users/explain/colors/index.html
plt.colormaps()
plt.get_cmap() # None == ‘viridis’
- x_tick_rotationint, optional, default=0
Rotates x-axis tick labels by the specified angle.
Added in version 0.3.9.
- **kwargs: dict
Generic keyword arguments.
- Returns:
- figmatplotlib.figure.Figure
The figure on which the plot was drawn.
- Other Parameters:
- axmatplotlib.axes.Axes, optional, default=None
The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required).
- figmatplotlib.pyplot.figure, optional, default: None
The figure to plot the Visualizer on. If None is passed in the current plot will be used (or generated if required).
- figsizetuple, optional, default=None
Width, height in inches. Tuple denoting figure size of the plot e.g. (12, 5)
- nrowsint, optional, default=1
Number of rows in the subplot grid.
- ncolsint, optional, default=1
Number of columns in the subplot grid.
- plot_stylestr, optional, default=None
Check available styles with “plt.style.available”. Examples include: [‘ggplot’, ‘seaborn’, ‘bmh’, ‘classic’, ‘dark_background’, ‘fivethirtyeight’, ‘grayscale’, ‘seaborn-bright’, ‘seaborn-colorblind’, ‘seaborn-dark’, ‘seaborn-dark-palette’, ‘tableau-colorblind10’, ‘fast’].
Added in version 0.4.0.
- show_figbool, default=True
Show the plot.
- save_figbool, default=False
Save the plot.
- save_fig_filenamestr, optional, default=’’
Specify the path and filetype to save the plot. If nothing specified, the plot will be saved as png inside
result_images
under to the current working directory. Defaults to plot image named to usedfunc.__name__
.- verbosebool, optional
If True, prints debugging information.
Notes
The function generates and displays multiple evaluation plots. Ensure that
y_true
andy_pred
have the same shape and contain valid class labels. Thenormalize
parameter is applicable to the confusion matrix plot. Adjustcmap
andx_tick_rotation
to customize the appearance of the plots.Examples
>>> from sklearn.datasets import load_digits as data_10_classes >>> from sklearn.model_selection import train_test_split >>> from sklearn.naive_bayes import GaussianNB >>> import scikitplot as skplt >>> X, y = data_10_classes(return_X_y=True, as_frame=False) >>> X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5, random_state=0) >>> model = GaussianNB() >>> model.fit(X_train, y_train) >>> y_val_pred = model.predict(X_val) >>> skplt.metrics.plot_classifier_eval( >>> y_val, y_val_pred, >>> title='val', >>> );
(
Source code
,png
)