ServerConfig#
- class scikitplot.mlflow.ServerConfig(host='127.0.0.1', port=5000, auto_host_in_docker=False, docker_host='0.0.0.0', workers=None, backend_store_uri=None, registry_store_uri=None, default_artifact_root=None, serve_artifacts=False, no_serve_artifacts=False, artifacts_destination=None, artifacts_only=False, allowed_hosts=None, cors_allowed_origins=None, x_frame_options=None, disable_security_middleware=False, static_prefix=None, uvicorn_opts=None, gunicorn_opts=None, waitress_opts=None, expose_prometheus=None, app_name=None, dev=False, secrets_cache_ttl=None, secrets_cache_max_size=None, strict_cli_compat=True, extra_args=None)[source]#
Configuration that maps directly to
mlflow serverCLI flags.- Parameters:
- hoststr, default=”127.0.0.1”
Host interface to bind.
- portint, default=5000
Port to bind.
- auto_host_in_dockerbool, default=False
If True and running inside Docker (
/.dockerenvexists), then a configured host of127.0.0.1will be overridden todocker_hostwhen spawning the server. This makes the UI reachable with container port publishing.- docker_hoststr, default=”0.0.0.0”
Host value to use when
auto_host_in_dockertriggers.- workersint or None, default=None
Optional number of worker processes.
- backend_store_uristr or None, default=None
--backend-store-uri.- registry_store_uristr or None, default=None
--registry-store-uri.- default_artifact_rootstr or None, default=None
--default-artifact-root.- serve_artifactsbool, default=False
If True, adds
--serve-artifacts.- no_serve_artifactsbool, default=False
If True, adds
--no-serve-artifacts.- artifacts_destinationstr or None, default=None
--artifacts-destination.- artifacts_onlybool, default=False
If True, adds
--artifacts-only.- allowed_hostsstr or None, default=None
--allowed-hosts.- cors_allowed_originsstr or None, default=None
--cors-allowed-origins.- x_frame_optionsstr or None, default=None
--x-frame-options.- disable_security_middlewarebool, default=False
--disable-security-middleware.- static_prefixstr or None, default=None
--static-prefix.- uvicorn_optsstr or None, default=None
--uvicorn-opts.- gunicorn_optsstr or None, default=None
--gunicorn-opts.- waitress_optsstr or None, default=None
--waitress-opts.- expose_prometheusstr or None, default=None
--expose-prometheus(directory to store metrics, enables/metrics).- app_namestr or None, default=None
--app-name.- devbool, default=False
--dev(debug + auto-reload; unsupported on Windows).- secrets_cache_ttlint or None, default=None
--secrets-cache-ttl(seconds; MLflow enforces ranges at runtime).- secrets_cache_max_sizeint or None, default=None
--secrets-cache-max-size(entries; MLflow enforces ranges at runtime).- strict_cli_compatbool, default=True
If True, validate that every configured CLI flag is supported by the installed MLflow, using
mlflow server --help. Unknown flags raiseMlflowCliIncompatibleError.- extra_argsSequence[str] or None, default=None
Extra CLI args appended verbatim. With
strict_cli_compat=True, flags insideextra_argsare also checked for support.
- Raises:
- ValueError
If configuration violates generic constraints (e.g., invalid port).
- Parameters:
host (str)
port (int)
auto_host_in_docker (bool)
docker_host (str)
workers (int | None)
backend_store_uri (str | None)
registry_store_uri (str | None)
default_artifact_root (str | None)
serve_artifacts (bool)
no_serve_artifacts (bool)
artifacts_destination (str | None)
artifacts_only (bool)
allowed_hosts (str | None)
cors_allowed_origins (str | None)
x_frame_options (str | None)
disable_security_middleware (bool)
static_prefix (str | None)
uvicorn_opts (str | None)
gunicorn_opts (str | None)
waitress_opts (str | None)
expose_prometheus (str | None)
app_name (str | None)
dev (bool)
secrets_cache_ttl (int | None)
secrets_cache_max_size (int | None)
strict_cli_compat (bool)
- validate(*, for_managed_tracking)[source]#
Validate configuration against generic MLflow constraints.
- Parameters:
- for_managed_trackingbool
If True, validation assumes a tracking server will be spawned and readiness will be checked via tracking REST endpoints.
- Raises:
- ValueError
If validation fails.
- Parameters:
for_managed_tracking (bool)
- Return type:
None
Notes
This method validates generic invariants and known mutual-exclusivity rules.
Exact per-version validation is delegated to MLflow itself; unsupported flags are caught separately when
strict_cli_compat=True.