plot_lift_decile_wise#
- scikitplot.kds.plot_lift_decile_wise(y_true, y_probas, *, pos_label=None, class_index=1, title='Decile-wise Lift Plot', title_fontsize='large', text_fontsize='medium', data=None, **kwargs)[source]#
Generates the Decile-wise Lift Plot from labels and probabilities
The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html The implementation here works only for binary classification.
- Parameters:
- y_truearray-like, shape (n_samples,)
Ground truth (correct) target values.
- y_probasarray-like, shape (n_samples, n_classes)
Prediction probabilities for each class returned by a classifier.
- titlestr, optional, default=’Decile-wise Lift Plot’
Title of the generated plot.
- title_fontsizestr or int, optional, default=14
Font size for the plot title. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- text_fontsizestr or int, optional, default=10
Font size for the text in the plot. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- **kwargsdict, optional
Generic keyword arguments.
- Returns:
- axmatplotlib.axes.Axes
The axes with the plotted Decile-wise Lift curves.
- Other Parameters:
- axmatplotlib.axes.Axes, optional, default=None
The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required).
Added in version 0.4.0.
- figmatplotlib.pyplot.figure, optional, default: None
The figure to plot the Visualizer on. If None is passed in the current plot will be used (or generated if required).
Added in version 0.4.0.
- figsizetuple, optional, default=None
Width, height in inches. Tuple denoting figure size of the plot e.g. (12, 5)
Added in version 0.4.0.
- nrowsint, optional, default=1
Number of rows in the subplot grid.
Added in version 0.4.0.
- ncolsint, optional, default=1
Number of columns in the subplot grid.
Added in version 0.4.0.
- plot_stylestr, optional, default=None
Check available styles with “plt.style.available”. Examples include: [‘ggplot’, ‘seaborn’, ‘bmh’, ‘classic’, ‘dark_background’, ‘fivethirtyeight’, ‘grayscale’, ‘seaborn-bright’, ‘seaborn-colorblind’, ‘seaborn-dark’, ‘seaborn-dark-palette’, ‘tableau-colorblind10’, ‘fast’].
Added in version 0.4.0.
- show_figbool, default=True
Show the plot.
Added in version 0.4.0.
- save_figbool, default=False
Save the plot.
Added in version 0.4.0.
- save_fig_filenamestr, optional, default=’’
Specify the path and filetype to save the plot. If nothing specified, the plot will be saved as png inside
result_images
under to the current working directory. Defaults to plot image named to usedfunc.__name__
.Added in version 0.4.0.
- overwritebool, optional, default=True
If False and a file exists, auto-increments the filename to avoid overwriting.
Added in version 0.4.0.
- add_timestampbool, optional, default=False
Whether to append a timestamp to the filename. Default is False.
Added in version 0.4.0.
- verbosebool, optional
If True, enables verbose output with informative messages during execution. Useful for debugging or understanding internal operations such as backend selection, font loading, and file saving status. If False, runs silently unless errors occur.
Default is False.
Added in version 0.4.0: The
verbose
parameter was added to control logging and user feedback verbosity.
See also
print_labels
A legend for the abbreviations of decile table column names.
decile_table
Generates the Decile Table from labels and probabilities.
plot_lift
Generates the Decile based cumulative Lift Plot from labels and probabilities.
plot_lift_decile_wise
Generates the Decile-wise Lift Plot from labels and probabilities.
plot_cumulative_gain
Generates the cumulative Gain Plot from labels and probabilities.
plot_ks_statistic
Generates the Kolmogorov-Smirnov (KS) Statistic Plot from labels and probabilities.
References
[1] tensorbored/kds
Examples
>>> import scikitplot as skplt >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.5, random_state=0 ... ) >>> clf = DecisionTreeClassifier(max_depth=1, random_state=0) >>> clf = clf.fit(X_train, y_train) >>> y_prob = clf.predict_proba(X_test) >>> skplt.kds.plot_lift_decile_wise(y_test, y_prob, class_index=1)
(
Source code
,png
)