plot_lift_decile_wise#
- scikitplot.kds.plot_lift_decile_wise(y_true, y_probas, *, pos_label=None, class_index=1, title='Decile-wise Lift Plot', title_fontsize='large', text_fontsize='medium', data=None, **kwargs)[source]#
Generates the Decile-wise Lift Plot from labels and probabilities
The lift curve is used to determine the effectiveness of a binary classifier. A detailed explanation can be found at http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html The implementation here works only for binary classification.
- Parameters:
- y_truearray-like, shape (n_samples,)
Ground truth (correct) target values.
- y_probasarray-like, shape (n_samples, n_classes)
Prediction probabilities for each class returned by a classifier.
- titlestr, optional, default=’Decile-wise Lift Plot’
Title of the generated plot.
- title_fontsizestr or int, optional, default=14
Font size for the plot title. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- text_fontsizestr or int, optional, default=10
Font size for the text in the plot. Use e.g., “small”, “medium”, “large” or integer-values (8, 10, 12, etc.).
- **kwargsdict, optional
Generic keyword arguments.
- Returns:
- axmatplotlib.axes.Axes
The axes with the plotted Decile-wise Lift curves.
- Other Parameters:
- axmatplotlib.axes.Axes, optional, default=None
The axis to plot the figure on. If None is passed in the current axes will be used (or generated if required).
- figmatplotlib.pyplot.figure, optional, default: None
The figure to plot the Visualizer on. If None is passed in the current plot will be used (or generated if required).
- figsizetuple, optional, default=None
Width, height in inches. Tuple denoting figure size of the plot e.g. (12, 5)
- nrowsint, optional, default=1
Number of rows in the subplot grid.
- ncolsint, optional, default=1
Number of columns in the subplot grid.
- plot_stylestr, optional, default=None
Check available styles with “plt.style.available”. Examples include: [‘ggplot’, ‘seaborn’, ‘bmh’, ‘classic’, ‘dark_background’, ‘fivethirtyeight’, ‘grayscale’, ‘seaborn-bright’, ‘seaborn-colorblind’, ‘seaborn-dark’, ‘seaborn-dark-palette’, ‘tableau-colorblind10’, ‘fast’].
Added in version 0.4.0.
- show_figbool, default=True
Show the plot.
- save_figbool, default=False
Save the plot.
- save_fig_filenamestr, optional, default=’’
Specify the path and filetype to save the plot. If nothing specified, the plot will be saved as png inside
result_images
under to the current working directory. Defaults to plot image named to usedfunc.__name__
.- verbosebool, optional
If True, prints debugging information.
See also
print_labels
A legend for the abbreviations of decile table column names.
decile_table
Generates the Decile Table from labels and probabilities.
plot_lift
Generates the Decile based cumulative Lift Plot from labels and probabilities.
plot_lift_decile_wise
Generates the Decile-wise Lift Plot from labels and probabilities.
plot_cumulative_gain
Generates the cumulative Gain Plot from labels and probabilities.
plot_ks_statistic
Generates the Kolmogorov-Smirnov (KS) Statistic Plot from labels and probabilities.
References
[1] tensorbored/kds
Examples
>>> import scikitplot as skplt >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> from sklearn.tree import DecisionTreeClassifier >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.5, random_state=0 ... ) >>> clf = DecisionTreeClassifier(max_depth=1, random_state=0) >>> clf = clf.fit(X_train, y_train) >>> y_prob = clf.predict_proba(X_test) >>> skplt.kds.plot_lift_decile_wise(y_test, y_prob, class_index=1)
(
Source code
,png
)