evalplot#
- scikitplot.snsx.evalplot(data=None, *, x=None, y=None, hue=None, kind=None, weights=None, hue_order=None, hue_norm=None, palette=None, color=None, fill=False, baseline=False, line_kws=None, log_scale=None, legend=True, ax=None, cbar=True, cbar_ax=None, cbar_kws=None, text_kws=None, image_kws=None, digits=None, common_norm=None, verbose=False, **kwargs)[source]#
Visualization of the Confusion Matrix [1] alongside a text report showing key classification metrics.
For guidance on interpreting these plots, refer to the Model Evaluation Guide.
- Parameters:
- data
pandas.DataFrame
,numpy.ndarray
, mapping, or sequence Input data structure. Either a long-form collection of vectors that can be assigned to named variables or a wide-form dataset that will be internally reshaped.
- x, yvectors or keys in
data
Variables that specify positions on the x and y axes.
- huevector or key in
data
Semantic variable that is mapped to determine the color of plot elements.
- kind{‘all’, ‘classification_report’, ‘confusion_matrix’} or None, default=None
Kind of plot to make.
- weightsvector or key in
data
If provided, observation weights used for computing the distribution function.
- hue_ordervector of strings
Specify the order of processing and plotting for categorical levels of the
hue
semantic.- hue_normtuple or
matplotlib.colors.Normalize
Either a pair of values that set the normalization range in data units or an object that will map from data units into a [0, 1] interval. Usage implies numeric mapping.
- palettestring, list, dict, or
matplotlib.colors.Colormap
Method for choosing the colors to use when mapping the
hue
semantic. String values are passed tocolor_palette
. List or dict values imply categorical mapping, while a colormap object implies numeric mapping.- color
matplotlib color
Single color specification for when hue mapping is not used. Otherwise, the plot will try to hook into the matplotlib property cycle.
- fillbool or None
If True, fill in the area under univariate density curves or between bivariate contours. If None, the default depends on
multiple
.- {line}_kwsdictionaries
Additional keyword arguments to pass to
plt.plot
.- log_scalebool or number, or pair of bools or numbers
Set axis scale(s) to log. A single value sets the data axis for any numeric axes in the plot. A pair of values sets each axis independently. Numeric values are interpreted as the desired base (default 10). When
None
orFalse
, seaborn defers to the existing Axes scale.- legendbool
If False, suppress the legend for semantic variables.
- ax
matplotlib.axes.Axes
Pre-existing axes for the plot. Otherwise, call
matplotlib.pyplot.gca
internally.- cbarbool
If True, add a colorbar to annotate the color mapping in a bivariate plot. Note: Does not currently support plots with a
hue
variable well.- cbar_ax
matplotlib.axes.Axes
Pre-existing axes for the colorbar.
- cbar_kwsdict
Additional parameters passed to
matplotlib.figure.Figure.colorbar
.- text_kwsdict
Parameters that control the
'classification_report'
visualization, passed totext
.- image_kwsdict
Parameters that control the
'confusion_matrix'
visualization, passed toimshow
. Recognized keys:- cmapNone, str or matplotlib.colors.Colormap, optional, default=None
Colormap used for plotting. Options include ‘viridis’, ‘PiYG’, ‘plasma’, ‘inferno’, ‘nipy_spectral’, etc. See Matplotlib Colormap documentation for available choices.
https://matplotlib.org/stable/users/explain/colors/index.html
plt.colormaps()
plt.get_cmap() # None == ‘viridis’
- digitsint, optional, default=4
Number of digits for formatting output floating point values. When
output_dict
isTrue
, this will be ignored and the returned values will not be rounded.- output_dictbool, default=False
If True, return output as dict.
- zero_division{“warn”, 0.0, 1.0, np.nan}, default=”warn”
Sets the value to return when there is a zero division. If set to “warn”, this acts as 0, but warnings are also raised.
- common_normbool
If True, scale each conditional density by the number of observations such that the total area under all densities sums to 1. Otherwise, normalize each density independently.
- verbosebool, optional, default=False
Whether to be verbose.
- normalize{‘true’, ‘pred’, ‘all’, None}, optional
Normalizes the confusion matrix according to the specified mode. Defaults to None.
‘true’: Normalizes by true (actual) values.
‘pred’: Normalizes by predicted values.
‘all’: Normalizes by total values.
None: No normalization.
- kwargs
Other keyword arguments are passed to one of the following matplotlib functions:
- data
- Returns:
matplotlib.axes.Axes
The matplotlib axes containing the plot.
Warning
Some function parameters are experimental prototypes. These may be modified, renamed, or removed in future library versions. Use with caution and check documentation for the latest updates.
- Parameters:
- Return type:
References