sigmoid#
- scikitplot.experimental._logsumexp.sigmoid(x, axis=None)[source]#
Compute the sigmoid function for the input array
x
.The sigmoid function is defined as:
sigmoid(x) = 1 / (1 + exp(-x))
\[\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}\]Added in version 0.3.9.
- Parameters:
- xarray-like
Input array for which to compute the sigmoid. This can be a list, numpy array, or any array-like structure.
- axisint or None, optional
Axis or axes along which to compute the sigmoid. If None, the sigmoid will be computed over the entire array. The default is None.
- Returns:
- numpy.ndarray
The sigmoid of each element in
x
, with the same shape asx
.
Examples
>>> import numpy as np >>> from scikitplot.experimental._logsumexp import sigmoid >>> x = np.array([0, 1, 2]) >>> sigmoid(x) array([0.5 , 0.7310586 , 0.88079708])